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Abstract

There are five fundamental concerns in the synthesis of realistic imagery of fractal

landscapes: 1) convincing geometric models of terrain; 2) efficient algorithms for

rendering those potentially-large terrain models; 3) atmospheric effects, or aerial

perspective, to provide a sense of scale; 4) surface textures as models of natural

phenomena such as clouds, water, rock strata, and so forth, to enhance visual detail in the

image beyond what can be modelled geometrically; and 5) a global context in which to

situate the scenes.  Results in these five areas are presented, and some aspects of the

development of computer graphics as a new process and medium for the fine arts are

discussed.  Heterogeneous terrain models are introduced, and preliminary experiments in

simulating fluvial erosion are presented to provide fractal drainage network features.  For

imaging detailed terrain models we describe grid tracing, a time- and memory-efficient

algorithm for ray tracing height fields.  To obtain aerial perspective we develop geometric

models of aerosol density distributions with efficient integration schemes for determining

scattering and extinction, and an efficient Rayleigh scattering approximation.  We also

describe physically-based models of the rainbow and mirage.  Proceduralism is an

underlying theme of this work; this is the practice of abstracting models of complex form

and behaviors into relatively terse algorithms, which are evaluated in a lazy fashion.

Procedural textures are developed as models of natural phenomena such as mountains and

clouds, culminating a procedural model of an Earth-like planet which in the future may

be explored interactively in a virtual reality setting.

KEYWORDS AND PHRASES: computer graphics, fractals, models of natural

phenomena, ray tracing, procedural modelling, erosion, aerial perspective, atmospheric

scattering, algorithmic art.
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"The thinker tries to determine and represent the nature of
the world through logic. He knows that reason and its tool,
logic, are incomplete -- the way an intelligent artist knows
full well that his brushes or chisels will never be able to
express perfectly the radiant nature of an angle or a saint.
Still they both try, the thinker as well as the artist, each in
his way.  They cannot and may not do otherwise. Because
when a man tries to realize himself through the gifts with
which nature has endowed him, he does the best and only
meaningful thing he can do."

- Herman Hesse
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Chapter 1:  Introduction

1.1  The Thesis

This dissertation is about advancing the state of the art in computer synthesis of

realistic landscape imagery, or creating "fractal forgeries of Nature".  Realistic imaging of

synthetic landscapes comprises five basic concerns: 1) convincing geometric models of

terrain, 2) efficient algorithms for rendering these potentially large models, 3) aerial

perspective to provide a sense of scale, 4) surface textures to enhance visual detail, and 5)

a global context in which to situate the landscape scenes.  This dissertation presents the

significant and original results in these five areas, as well as original work in other related

areas such as parallel computation and computer graphics as a medium for the fine arts.

These results represent work done since 1987 as part of Professor Benoit Mandelbrot's

Fractals Group at Yale University.

Our work on synthetic geometric terrain models was originally motivated by the

obvious shortcomings of fractional Brownian motion (fBm) terrain models, and by a suite

of ideas on the part of Professor Mandelbrot and myself for improving and extending

such models.  We have made substantial progress in extending the naive fBm model of

fractal terrain to include more of the heterogeneity and complexity that characterizes

natural terrains [78]; much of this progress will be detailed in this dissertation.
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When we undertook to create realistic (i.e., ray-traced) renderings of the resulting

geometric terrain models, it immediately became clear that existing algorithms were not

up to the task of rendering the usually-large (i.e., 103 −106 polygon) models reasonably

quickly, and with amount of memory typically available on a workstation of the time.

Thus we developed the time- and memory-efficient "grid tracing" algorithm.

Fast rendering of convincing geometric models is not, however, sufficient for creating

realistic forgeries of nature.  Other visual cues are necessary to convey a sense of scale

and to enhance realism.  A variety of ancillary models, falling into the two classes of

surface textures and atmospheric effects have been developed for these purposes and are

presented here.

Given the ability to create appealing three-dimensional landscape scenes and the fact

that animation is perhaps the most exciting form of computer graphics, one inevitably

wonders how to go about animating these scenes.  There are few moving parts in a

landscape, so the obvious kind of animation to make is a fly-by.  But this begs the

question: "Where do we come from, and where to we go to, in this fly-by?" This in turn

indicates the development of a global context for the landscape scenes; to this end some

results will be presented in developing planetary models.  Indeed, the most exciting

prospect for this work is the creation of a "virtual universe", populated with "virtual

planets" with adaptive level of detail, which one may explore interactively in a virtual

reality setting.

In the author's opinion, however, the greatest import of this work lies not in its

technical merit as original research in the field of computer graphics, but rather in its

significance as the development of a truly novel medium and creative process for the

visual arts.  The medium is numbers, strings, and logic; the process is distinguished by

the use of deterministic formal logic, as embodied in a computer program, to obtain

artistic self-expression in representational imagery (i.e., in realistic pictures "of something
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familiar", as opposed to impressionistic or abstract imagery).  The fascinating challenge

of encapsulating maximal expressive power in terse logical formalisms motivates our

emphasis on procedural modelling.

Proceduralism as a discipline in computer graphics involves the abstraction of

underlying form and/or behavior through time into a compact, elegant procedure or

algorithm which can then manifest the form or changes when and where needed, i.e.,

through lazy evaluation.  Large, detailed, explicit specifications of complex models are

reduced to encodings in relatively short and simple routines.  As the compliment of table-

lookup schemes, very little explicit descriptive information is stored; rather, a

specification for derivation of the data is developed, and that functional description is

evaluated when and where specifics are required.  Thus the overhead is shifted from

storage space to computation time.  The most significant gain in this process is a striking

elegance: all the color plates in this document were produced by a few computer

programs, the sizes of which are surprisingly small compared to the visual complexity of

their output.

The key to the visual complexity manifest in our procedural models and our images is

fractal geometry.  As the title of Mandelbrot's opus The Fractal Geometry of Nature [77]

states, fractal geometry is very much a language of nature; arguably even more so than

the more-familiar Euclidean geometry.  Our work has been largely motivated by the goals

of 1) developing the illustrations of the descriptive potency fractal geometry as a

language of nature, and 2) of expanding fractal geometry's descriptive vocabulary within

the domain of computer graphics.  The first goal has lead to the creation of "forgeries of

Nature" of unprecedented realism, while the second motivated the development of a

variety of novel fractal models of natural phenomena for computer graphics.

One distinguishing aspect of fractals is that they are generally specified not by an

equation such as y = f (x) , which may be solved explicitly, but rather by a recurrence
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relation, e.g., xi+2 = f xi+1( ) = f f xi( )( ), which generally defies human patience and

precision to evaluate manually.  However, such descriptions can map directly to recursive

or iterative routines in computer programs, and computers are capable of tireless

calculation with great precision and accuracy.  Thus fractals and computers are

inextricably intertwined.  Fractals are all also distinguished by their great complexity;

their complexity is so great that in practice they can only be apprehended visually (as the

greatest bandwidth to the human cerebral cortex by far, is through the sense of vision).

Thus fractals and computer graphics are also inseparable: computer graphics are

necessary for the visualization of fractals, and fractal images have, since the early days of

computer graphics, provided some of the most interesting and striking examples of

computer-synthesized imagery.  Research in fractal geometry indeed represents some of

the earliest visualization-driven scientific research. [79]

In the course of this work, we claim to have created fractal landscape models of

unprecedented realism, an efficient algorithm for ray tracing them, and procedural fractal

textures to add visual complexity to our scenes.  But this is not yet sufficient for creating

realistic forgeries of nature.  The terrain models possess no intrinsic scale and thus will

tend to be interpreted in a naive rendering as being of about the size of the rendering, i.e.,

on the scale of inches or feet.  Special visual cues are required to convey the impression

of grand scale intended in landscape renderings.  For hundreds of years, landscape

painters have employed aerial perspective -- a decrease in contrast and change in hue

with distance due to atmospheric scattering of light -- as the primary visual cue for

indicating truly large scale.  Thus we have expended considerable effort in developing

computationally efficient models for generating aerial perspective.

Aerial perspective is not a homogeneous effect.  Scattering is a function of aerosol

density; aerosol density is in turn a function of altitude, plus other factors such as

temperature, humidity, etc., which we ignore for the sake of simplicity.  Furthermore, a
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ray's optical path* through the atmosphere is limited geometrically by the objects in the

scene and, failing to intersect those, by the curvature of the atmosphere around the planet

itself.  (Otherwise a horizontal ray might have an optical path of infinite length; this is

never the case in Nature.)  To model scattering, then, we require realistic geometric

models of aerosol density distributions and an effective model of scattering, over those

distributions.  Efficiency is of paramount importance, therefore the aerosol density

distribution function should be easily integrable, and the scattering model should be

computationally simple.  The best models of nature from the scientific literature fit

neither criterion.

Our need for aerial perspective has lead us to develop a suite of atmospheric effects,

both aerosol distribution models and scattering models.  These culminate in a continuous

planetary atmosphere model, with a Rayleigh scattering approximation.

The availability of this model, plus the need for a global context for our landscapes,

has lead us to the development of models of entire planets.  Our ongoing research

concerns itself with the technical problems of situating our realistic local scenes upon the

face of an artificial planet.  This entails making the planet model consistent over all areas,

such as land and sea, night and day, dawn and dusk, and imbuing it with a realistic

measure of heterogeneity.  Having such a global model calls for adaptive level of detail,

so that we my render it from any perspective or point of view, and have the rendering be

automatically generated with the appropriate sized features in all visible areas.  This in

turn indicates use of a procedural model, as we lack the indefinite storage space for

explicit models of such detail.  Rendering with adaptive level of detail poses significant

challenges, which are the object of research underway at the time of this writing.

* We define optical path as the interval of a ray's traversal through a participating medium, such as an
atmosphere.



6

Five years of experience in generating realistic synthetic landscape imagery, has

molded the author's considered opinion to be that these items -- good terrain models,

efficient rendering schemes for them, visually complex surface textures, aerial

perspective, and planetary contexts for the local terrain models -- are essential to a

comprehensive and coherent capability for generating such images.  This is the thesis we

present in this dissertation.

1.2  Motivation

1.2.1  Fractal Terrain Models

This work began in 1987 when the author was employed by Professor Benoit

Mandelbrot in the Yale University Department of Mathematics to program some

improved schemes for generating fractal terrain models.  At the time, there had recently

been some controversy over the efficacy of polygon subdivision algorithms for creating

fractional Brownian motion (fBm) approximations [32,76].  Mandelbrot had some ideas

on how to eliminate the so-called creasing problem* and to vary the character of the final

fBm surface.  This work on polygon-based fractal terrain models culminated in

Mandelbrot's appendix to The Science of Fractal Images [78] in which he describes the

hexagon subdivision algorithms we developed together, to solve the creasing problem

and to incorporate drainage networks in the terrain model.

* The creasing problem refers to unnatural linear artifacts in the fBm surface due to nonstationary statistics,
which are traceable to the interpolant implicit in the subdivision scheme. [86]  See the mountains in the
background in Plate 1.1 for an example of the creasing problem.
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Figure 1.1  The trace of fBm.  The fractal dimension is 1.2.

Fractional Brownian motion is a random fractal function which happens to resemble

the skyline of a mountain range.  When extended from a curve to a surface, fBm of a

suitable fractal dimension (i.e., 2.1-2.3) resembles mountains.  However, fBm is by

design homogeneous and isotropic, while real terrains are neither.  In real terrains there is

asymmetry across the horizontal plane, as peaks and valleys have different roughnesses:

in rugged alpine terrains peaks tend to be more jagged than valleys (as valleys tend to fill

up with detritus and undergo periodic smoothing and sculpting by glaciers), while in

certain sub-alpine terrains (e.g., where diffusion is the primary erosional transport mode),

the hilltops can be more rounded than the valleys.  Furthermore, real terrains are

heterogeneous on the large scale: mountains can rise out of flat plains, generally preceded

by rolling foothills, and erosive processes create distinctive features which are globally

coherent.  (Indeed, fluvial and glacial erosion are the primary morphogenic agents

shaping most natural terrains.)  Naive fBm terrain models include none of these features;

a part of this work has been to develop terrain models which do.
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Fractional Brownian motion is perhaps most succinctly described by the Weierstrass-

Mandelbrot function [152]:

V(t) =
f =−∞

∞

∑ Af r
fH sin(2πr− f t + θ f )

(1.2.1)

where A  is a Gaussian random variable, r is the spatial resolution or lacunarity,  θ  is a

uniform random variable in the range [0,2π] providing a random phase, and H is the

Hölder exponent, which determines the fractal dimension.  The Weierstrass-Mandelbrot

function is basically an infinite sum of sine waves at discrete frequencies and with

random phase, with a certain size gap between successive frequencies (the lacunarity),

and an exponent H which scales amplitude by frequency.  Amplitude relates to frequency

f by the plot of the power spectral density* [152]

SWM ∝ 1
f H +1 (1.2.2)

and hence the result is referred to as 1 / f  noise.  The stochastic fBm function is

succinctly characterized by its power spectrum, as shown in Figure 1.2.

Figure 1.2  A log/log power spectrum of 1 / f β  noise for various values of β .

* The power spectral density  S( f ) is the power P( f ) of the signal at frequency f , or the mean squared

power over interval ∆f  centered at f , divided by ∆f : S( f ) = P( f ) / ∆f .  The plot of the power
spectral density is known as the power spectrum.
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In practice in computer graphics we generally utilize discretized fractional Brownian

motion, in which the lacunarity is usually ~2.0 and the summation is over a rather small

range, e.g., 3 to 8 octaves (octaves ≡  doublings of frequency).  Larger summations are

unnecessary-to-detrimental: frequencies much lower than the size of the rendering

viewport are simply not visible except as a bias to the slope of the terrain, and frequencies

appearing in image space at higher than half the screen resolution will, by the Nyquist

Sampling Theorem [116], suffer aliasing and, because the underlying function is

stochastic, appear as noise.

In the small spectral summations typically used for the construction of discretized

fBm, the character of the basis function shows through clearly in the final result.  In the

Weierstrass-Mandelbrot function and Fourier synthesis methods [133,152] the basis

function is a sine wave, whereas for polygon-subdivision schemes it is a sawtooth wave.

The former suffers from periodicity artifacts, while the latter is by nature jagged, and may

(as with nested [78] subdivision schemes) suffer from the "creasing" problem.  To avoid

these and other problems, we have developed the noise synthesis [106,119] method,

wherein the basis function is a band-limited stochastic function, consisting of a piece-

wise tri- or bi-cubic polynomial interpolant.  This approach eliminates periodicity and

yields a nearly isotropic, visually well behaved result, albeit with a somewhat non-

intuitive frequency content. [134]

Another goal of our terrain-generation research has been to model erosion features.

The local variation of frequency content in the heterogeneous terrain models of the noise-

synthesis method [106] is designed to model locally coherent erosion features, such as

valleys that are smoother than peaks.  The problem of including the coherent, context-
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sensitive* features of fluvial drainage networks in synthetic terrain models had previously

been addressed in the literature [61], but not in the context of a fractal surface model.

Work has therefore been undertaken in developing simulations of fluvial erosion

processes, which can be applied to preexisting terrain models. [106]  These models,

developed with the assistance of Professor Edward Bolton of the Yale Department of

Geology & Geophysics, have been based on erosion laws from the literature of fluvial

geomorphology. [3,135]

1.2.2  Efficient Ray Tracing

Again, a convincing geometric terrain model is only part of what is required to

synthesize realistic images of natural scenes.  Realism is a function of comprehensive

lighting models and both gross form and fine detail in the geometric models.  Ray tracing

[158] provides a quite believable -- if not comprehensive -- lighting model, if at

significant computational cost.  A high level of geometric detail implies a large model, in

terms of number of primitive objects.  With ray tracing, the asymptotic time complexity

is generally a function of the number of primitives, among other things.  Larger models

take longer to render.

1.2.2.1.  Why Ray Trace?

At the outset of our work, we chose to ray trace our scenes for a variety of reasons.

Foremost among these was realism: as a global illumination model, ray tracing can

provide an excellent visual approximation to reality, within a conceptually elegant

paradigm.  The realism is largely due to the fact that perspective projection, shadows and

* As the formation of drainage networks corresponds to the drainage of potential from an area, what
happens at every point is a function of what happened "upstream", thus the problem is context-sensitive.
Note that it is very much like the electric discharge patterns in dielectric breakdown, another natural
phenomenon which is computationally expensive to simulate.
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reflections issue naturally from the geometric optics of the ray tracing algorithm.  The

elegance of the paradigm means that a single researcher can handle designing and

implementing the rendering software as a "sideline" to his or her "real" research, which in

this case is developing models of natural phenomena for computer graphics, and

perfecting the images themselves.

Ray tracing is a semi-physical model of the propagation of light in the world, the

primary simplifying assumptions being that the light rays propagate out from the eye into

the world, as opposed to originating from light sources, and that a reasonably small

number of point samples can be used to reconstruct acceptable approximations to

illumination integrals.  Invoking this model, the rest reduces to standard local

illumination calculations, geometric optics, and numerical integration methods.*

The geometric optics of ray tracing nicely accommodates two important features of

our renderings: procedural textures and atmospheric effects.  Not all rendering algorithms

make available the spatial information required for evaluation of these effects, i.e., the

world-space coordinates of the ray endpoints.  Scanline algorithms, for instance, operate

in screen space, not in world space, thus the world-space coordinate values of the point

samples are never computed.  The geometric optics and recursion of the ray tracing

algorithm make the required information available in a straightforward way, at the

appropriate junctures in the rendering process.

In full disclosure, it must be admitted that the decision to use ray tracing was

prejudiced as well by the fact that the author was already in possession of, and had

thorough working knowledge of, the "Optik" [1] ray tracing program, written by John

* The integrand is generally an arbitrary function (such as the illumination over the area of the image plane
that a pixel represents), therefore the integral is properly regarded as inherently intractable.  As a result of
this, the Nyquist sampling theorem, perceptual considerations, and the need for speed, numerical
integration is generally accomplished with a  Monte Carlo variant of the midpoint rule. [23]
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Amanatides and Andrew Woo of the University of Toronto, and was loathe to start afresh

with an unfamiliar and/or untried rendering package (much less write one from scratch!).

1.2.2.2.  Why Not to Ray Trace

There are at least two good arguments against ray tracing: 1) it may be conceptually

elegant, but it is a computationally expensive algorithm, and 2) it is notoriously slow for

large models, as the time complexity of the naive algorithm is linear with the number of

primitives in the model.  The number of primitive polygons tessellating a height field

surface varies as the square of the resolution of the height field, so this number can get

quite large indeed.  (Typically, in our scenes, the number of primitives is on the order of

104  to 106 .)  Fortunately, algorithmic advances described here and the parallel processing

power made available by the C-Linda coordination language [16], put ray tracing within

the realm of feasibility.

1.2.2.3.  Ray Tracing Height Fields

At the outset, using a Sun 3/60 workstation with 8 Mb of RAM, it took nearly an hour

of run time just to load into the ray tracing program the (several megabytes) ASCII text

file in which each triangle was described separately, and that for a height field of only

about 104  triangles!  With this as motivation, it was noted that 1) there is enormous

regularity and spatial coherence in a height field, and 2) there can be a far more compact

representation than an explicit ASCII description of each polygon.  The first admits the

efficient use of spatial-subdivision schemes with rapid data-structure traversal.  The

second, along with the observation that no one is likely to want to directly inspect the

height field data as such, indicates storing the height field data in raw, binary form.  Some

information, such as shared vertices in the final polygon mesh, is implicit while some,

such as surface normals and polygon plane equations, is computed on-the-fly and not

(permanently) stored.
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As detailed terrain models for high-resolution images are perforce large, ray tracing

them was, circa 1987, a primarily memory-bound problem.  At the time when the "grid

tracing" algorithm described here was developed, the primary published competing

algorithm was the quad-tree decomposition of Kajiya [54] and Mastin et al. [82]  The

O log4 n( ) memory overhead of the quad-tree data structure was deemed excessive at the

time (and is still occasionally found to be so at the date of this writing).  Recently,

Paglieroni and Peterson [115] have developed the very time-efficient "parametric"

algorithm, based on so-called distance estimators, for ray tracing height fields.  While the

quad-tree algorithm is significantly faster than grid tracing, and Paglieroni's results

indicate that the parametric algorithm is much faster than both, both quadtree and

distance-estimation algorithms incur significant overhead in memory.  While this is less

of an issue by the time of this writing in 1993, the grid tracing algorithm remains the

most memory-efficient of published height field ray tracing algorithms.

1.2.3  Procedural Textures

Convincing geometric terrain models and efficient ray tracing methods are still not

sufficient for creating convincing landscape images.  With a terrain model of fixed,

homogeneous resolution, the perspective rendering projection will cause the geometric

detail to appear insufficient in the foreground, while in the distance it might exceed the

Nyquist limit in image space.  Procedural geometric models with adaptive screen-space

frequency content are difficult to program, generally quite slow to evaluate (i.e., to

render), and are still under development at the time of this writing.  Thus today they are

still not an immediately viable solution to the problem of lack of geometric detail, and

they would have been completely out of the question at the outset of this work, in 1987,

because of the speed of the processors and the amount of main memory available then.

Fortunately, surface textures can be used to distract attention from overly-simple

model geometry.  Texture maps can add detail by modulating the color of the surface.
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The apparent surface geometry, for the purposes of lighting calculations, can be modified

the surface normal perturbation technique of bump mapping. [11]  Fractal bump maps

applied to Euclidean surfaces can add visual complexity and provide a natural (i.e., non-

Euclidean) appearance.

Procedural or solid textures offer remarkable flexibility in texturing.  In this

approach, the texture is defined as a function T:R3 → S  mapping three-space to S , the set

of surface properties such as color, orientation (as defined by the surface normal),

transparency, etc.  Thus the texture function T  takes as arguments the world- or object-

space coordinates of the point at which its value is required, and returns the surface

properties it was designed to modify (most often, the color and/or surface normal).  The

function comprises the abstract description of the often-complex visual behavior of the

texture.*  Complex procedural textures are usually fractal, because of the terse abstraction

of visual complexity available in the fractal paradigm.  Procedural texture functions may

also use information additional to the coordinates of the evaluation point: for instance,

one might reference the distance from the eye point, in order to clamp the screen-space

frequency content below the Nyquist limit.

The work on procedural textures presented here was largely motivated by the

opportunity seen in Perlin's seminal 1985 SIGGRAPH paper [119]: the illustrations in his

paper demonstrated a naturalism previously unapproached in computer-synthesized

imagery, in the author's view.  The power of Perlin's stochastic procedural approach was

clear and called for detailed investigation; this dissertation is largely an exposition of the

results of that investigation.

* See Plate 4.3, which consists only of three spheres, an atmosphere function, and four procedural textures:
one for the planet surface, one for the clouds, another for the moon's surface, and another for the stars in the
background.  The visual complexity is almost entirely due to the procedural textures; the underlying
geometric model is trivial and virtually featureless.
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Apart from the interface design, the three key points to Perlin's paper are: 1) the

procedural approach, in which the texture is described as a function over three-space,

rather than a preexisting 2-D image to be mapped, 2) the band-limited stochastic "noise"

function, the aperiodic nature of which makes it a favorable substitute for the sine wave

used in spectral-synthesis of fractal models, and 3) the creation of 1/ f β  noise textures

using this function.  While there is a variety of competing schemes [38,72-74,160], the

noise synthesis method remains the author's first choice due to its generality, simplicity,

and elegance.  The repertoire of natural-looking visual effects which may be obtained

with such textures can be expanded indefinitely.

1.2.4  Atmospheric Phenomena

Good geometric models, efficient rendering schemes, and natural looking surface

textures are still not enough for creating realistic landscape images.  There is no intrinsic

scale in any of these models; yet we intend the images to represent scenes of vast size.

Landscape painters have known for centuries that the primary scale cue in large scenes is

aerial or atmospheric perspective [40], or the change in color and decrease in contrast

with distance, due the effects of atmospheric scattering of light.  Thus it has proved

necessary (and rewarding) to develop some practical models of wavelength-dependent

Rayleigh scattering and aerosol distributions.  The latter consists of constructing

geometric models of atmospheric density structure, which determines the local optical

densities, which in turn determine the integral of the scattering along the ray path.

1.2.4.1.  Atmospheric Scattering

Development of Rayleigh scattering models is motivated by the scale-cueing

effectiveness of the color change with distance.  It is Rayleigh scattering which generates

the familiar "purple mountain majesties", the blue color of the daytime sky, and the red in

sunsets.  Development of geometric models of aerosol density distributions was
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motivated first by the desire to make better looking pictures: pictures which are more

realistic, in that the optical density is greater at lower altitudes.  This lead to the original,

though not unprecedented, development of an exponential-with-altitude aerosol

distribution model.  (See Plate 1.2.)  This model is geometrically flawed, however, as all

rays which miss the terrain will proceed to infinity (or numerical representation thereof)

and may thereby integrate to the base color of the atmosphere (e.g., white).  This problem

can be side-stepped in static images by using a vertical plane in the near background to

limit the optical path and thereby the integration; indeed, this is the approach we used in

our early renderings.  However, it was foreseen that the artificial horizon created at the

background plane/terrain intersection might become visible in animated fly-bys, much to

the detriment of realism.

For these reasons a radially-symmetric atmosphere model was developed, in which

the aerosol distribution used in the integral is a close geometric approximation to that of a

"real" planetary atmosphere, i.e., varying exponentially with radius from a point in space.

Then the scattering integration is bounded by the "right" (i.e., geometric) constraints:

even a horizontal ray will eventually exit the atmosphere; thus all rays have a finite

optical path through the participating medium.

The atmosphere around the planet in Plate 4.3 demonstrates both the radial

atmosphere model and our Rayleigh scattering approximation.  The latter is evident in the

region near where the planet occults the moon: notice in the close-up (Plate 4.4) that the

color of the (homogeneous) atmosphere model transitions smoothly from scattering-

dominated -- the blue against the black backdrop of space -- to extinction-dominated,

where it filters the pale gray lunar surface to a smoggy orange color, as with sunsets on

Earth.  We maintain that it would be difficult to obtain realistic terrain renderings, in

general, without such effects at our disposal.
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1.2.4.2.  Efficiency Concerns

As the primary concern in this research has been more at the generation of realistic

images, than the development of elaborate and/or accurate models, simplicity in the

models has been a key goal.  Thus the elaborate "physical"* Rayleigh scattering models of

Klassen [64] and others, have been eschewed in favor of a more computationally efficient

approximation.

The goal of a Rayleigh scattering model for computer graphics purposes is to recreate

the blue sky and the bluing of terrain with distance, as well as the reddening of pale

colors over distance due to extinction.  As Rayleigh scattering is a wavelength-dependent

phenomenon, proper modelling would require integration of energy over the spectrum of

visible light, as well as integration of scattering and extinction over the optical path.  In

production image synthesis, calculating these integrals on a per-ray basis is currently

impractical.  Therefore we have developed a greatly simplified rgb (red/green/blue)

approximation to Rayleigh scattering and extinction, which may be evaluated over

arbitrary ray paths at a constant cost, that cost being about three times that of non-

wavelength-dependent scattering.  While the model lacks some of the physical veracity of

a more elaborate (i.e., Klassen-type) model, it is far more efficient and thus better suited

to our goal of production image synthesis.  We claim that it stands as a legitimate,

practical counterpart to more-accurate "physical" models.

1.2.4.3.  Rainbow Model

Nevertheless, we have not entirely shied away from rigorous, physical modelling of

wavelength-dependent scattering effects.  We present a physical simulation of the

* We use quotation marks around the word "physical" in this case because Lord Rayleigh's original model
of wavelength-dependent atmospheric scattering [148] was in fact an empirical model, based on
measurements, not on first principles of physics.
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rainbow, as an implementation of the model first proposed by René Descartes in 1637

and an extension of the author's Masters thesis work. [101,102]  This model is based on

the simulation of the propagation of light through an idealized (spherical) raindrop, taking

into account the wavelength-dependent phenomena of dispersion and Fresnel reflection

and refraction.  While this model suffers from the dearth-of-"bang-for-the-buck" typical

of many physical models for computer graphics, the simulation need be performed only

once: the axially symmetric nature of the rainbow means that the results may be stored in

a one-dimensional lookup table for all future use in rendering.  For this reason, a physical

approach was deemed feasible for this model.

Work on this rainbow model, along with previous Masters degree research, elucidated

the difficulty of working with monochromatic samples of the visible spectrum [95]: all

such samples lie outside the color gamut of any reasonable display device, as may their

linear combinations.  This observation informed and motivated our decision to develop

the rgb approximation for Rayleigh scattering.

1.2.4.4.  Mirage Model

The appearance of a seemingly flawed exposition of a model of the mirage [8] led to

our development of a semi-physical model. [95]  We label this "semi-physical" because it

incorporates certain physical interactions (i.e., the phenomenon of total reflection or total

internal reflection seen when light rays encounter, at a glancing angle, a transition from

higher index of refraction to lower index of refraction), while other aspects of Nature are

replaced with simplified models (as the complex atmospheric density structure involved

in mirages is replaced with a planar discontinuity in refractive index, with a fractally-

perturbed surface normal).

Interestingly, development of this model led to one of our best-known images --

"Zabriskie Point" (Plate 1.3) -- which appeared, among other places, on the cover of
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IEEE Computer Graphics & Applications [91], as a two-page spread in the

Communications of the ACM [63], and in the 1991 SIGGRAPH Art Show.  This image is

significant in that it straddles the boundary between art and science, and represents an

original result in both.  It was conceived and designed as an illustration of a model for a

technical paper [95], and as such represents scientific illustration.  Yet the author makes

the (incontrovertible) claim as an artist, that the image also represents artistic self-

expression, obtained through the peculiar creative process we will illuminate in an

appendix.  The acclaim it has garnered as an artwork bespeaks its aesthetic success.

Furthermore, it may represent a truly original work of fine art: S. D. Gedzelman, an

authority on the uses of atmospheric effects in the fine arts, claims that there has been no

prior appearance of a mirage in a landscape rendering. [40]  At any rate, this image stands

out as an example of simultaneous success and import in both art and science, and as such

may represent the most interesting and significant of our images.

1.2.4.5.  Cloud Models

A key feature in nearly all artistic landscape renderings which show a significant area

of sky, is the clouds.  Modelling clouds is an area of significant difficulty for computer

graphics: while it may be fairly easy to conceive of reasonable three-dimensional fractal

geometric models for clouds (as with fractal hypertextures [120]), realistic rendering of

such models is, to date, impractical.  This is due not only to the complexity of the

geometric model, but also to the fact that multiple scattering by high-albedo particles is a

critical element of their illumination.  While applicable volumetric illumination models

have been described [57,130] and could conceivably be evaluated in linear time [46] even

for complex geometric models, this remains an open problem which is expected to be

challenging in any case.

Thus, with the notable exception of Gardner's work [39], cloud models in computer

graphics have generally been two-dimensional.  In service of our landscape imagery, we
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have developed some simple two-dimensional fractal cloud models for use as backdrops,

as well as a straightforward procedural implementation of Gardner's ellipsoid-texturing

approach.  As our work on landscapes expanded to planetary-scale renderings,

observations of planetary cloud systems lead to the development of various procedural

texture models for such phenomena.  At least one of these, in turn, proved useful in

landscape renderings: in Plates 1.2 and 1.3, the cloud model which was developed for the

planet model see in Plate 4.3 is used effectively on a more local scale.

1.2.5  Planetary Models

Again, as animated fly-bys of landscape scenes were contemplated, the questions

arose: "What to do for the greater context?  Where to come from?  Where to go to?"  This

lead us to think, literally, in global terms.  The need for a geometrically correct

atmosphere model, in order to naturally limit integration of scattering effects, had already

lead to the planetary atmosphere model.  Concerns with modelling terrain at very large

scales were leading to heterogeneous terrain models, which model the variety of natural

terrains on the continental scale.  Ideas for procedural textures to represent both planetary

surfaces and cloud tops were manifold.  Thus we undertook the development of models

of a variety of planets.

Problems associated with this undertaking include: the development of terrain models

at the largest scale, including features such as those associated with tectonics and

orogenetic belts; development of convincing visual models of turbulent flow in planetary

atmospheres, such as the cyclonic storm systems seen on Earth and in gas giant planets;

transition of model geometry and lighting calculations from surface texture models at a

distance, to full geometric description up close; managing image-space frequency content

of the models over a wide range of scales; and abstraction of a reasonably small

parameter space in which convincing descriptions of a multitude of interesting worlds
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may be found by primarily stochastic means (to facilitate automatic, random population

of a virtual universe with virtual worlds worth investigating).

The opportunity presented by a detailed, heterogeneous procedural fractal planet

model is significant: as the model is fractal, it may be evaluated over a wide range of

scales; as it is procedural, it need never be stored explicitly, rather its description may be

stored in a compact, implicit algorithmic form.  The net result will be the capability to

populate a virtual universe with stochastic, procedural virtual worlds, which will be as

full of surprise and serendipity for their creator as for the casual observer/explorer.  In

years to come, when the capability to render such complex scenes in real-time is in place,

we will be able to explore these worlds interactively in a virtual reality setting -- this is

indeed an exciting prospect.  Work in this area is expected to continue for years into the

future.

1.2.6  Parallel Computation

The capacity to develop and execute the algorithms described in this dissertation has

hinged upon the availability of substantial parallel computing power, as provided by the

C-Linda coordination language. [16]  Computer graphics in general requires significant

computational resources, in terms of both time and memory.  The former is often

addressed by the application of special-purpose hardware to common graphics routines

such as line drawing and polygon scan-conversion; the latter is ever less an issue, due to

the decreasing cost and increasing quantities of both volatile and non-volatile storage

media.  Graphics algorithms such as ray tracing, however, are too complex and ephemeral

to merit the development of mass-produced special-purpose hardware, and algorithms

which are still under development (as are most advanced graphics algorithms) are not

generally strong candidates for implementation in custom VLSI chips.  Also, the

programs developed to implement graphics algorithms may be large, and generally much
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effort has gone into optimizing the code.  Such programs represent a significant

investment, largely of programming time.

The net indication of these factors is the development of portable code packages

which may readily be executed on the latest, improved computer architecture -- the

"machine of the month".  Development of platform-specific, non-portable code may be

folly: the time required for a single researcher to write and debug, for instance, a full ray

tracing program is potentially greater than the mean-time-to-obsolescence for any given

platform, and such a time investment in rote code-rewriting could severely impact the

time left for "real" research and for developing new code.  Using C-Linda, we have been

able to take our existing ray tracers (Optik [1] from the University of Toronto, and

Rayshade [67] from Yale and Princeton Universities) written in vanilla (i.e., Kernigan &

Ritchie) C and parallelize them, with only about a day or two of design and programming

work.  The capacity to compile and run sequentially was retained, through the use of

conditional compilation flags, and a high degree of portability was retained, aside from

assumptions made re shared-memory and distributed parallel environments (e.g., when to

read the scene description file, before or after calling eval() to create more processes).

It is a time-honored heuristic in computer graphics, that users are willing to wait at

most one to four hours for a rendering to complete; the author is no exception to this rule.

Thus the quality of synthetic imagery is in part limited to what can be rendered in this

time.  This indicates two ways to improve capacity: develop faster code and algorithms,

and use faster computers.  Parallelism is a way to multiply the computational power at

one's disposal, for appropriate applications.  Fortunately, many graphics applications are

"embarrassingly parallel".  In particular, ray tracing readily admits to MIMD parallel

computation: a simple screen-space decomposition, with the model globally distributed or

in shared memory, yields a speedup which is nearly linear with the number of processors

brought to bear.  Because the algorithm is CPU-bound and, for the most part, locally
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independent, there is little overhead due to communication and memory access

contention.  Thus parallel ray tracing as facilitated by C-Linda has allowed the use of

models which would otherwise be impractical, due to the four-hour rule, to vastly

improve the quality of our images.

Indeed, the extent to which these images excel in the current practice of computer

graphics is largely creditable to the computational power that Linda has made available.

Some of the elaborate procedural models we use would simply be impractical without the

power of parallelism to evaluate them.  With parallel computation, renderings at very

high resolutions can be accomplished in a reasonable amount of time; thorough

supersampling (e.g., up to 256 rays/pixel) for antialiasing purposes becomes more

practical.  The computational power laid at our doorstep by Linda is, fundamentally, the

bedrock upon which this work is built; it is safe to say that without it, much of the work

would not even have been undertaken.  Best of all, from the author's point of view, is the

simplicity and transparency of Linda in practice: like the computers we use and the cars

we drive, we can take it for granted, without knowing much about its internals.  We have

very little to say about Linda -- and that is exactly how we would have it.  That statement

is rightly viewed as a powerful endorsement of the Linda paradigm for parallel

computation.

1.2.7  Artistic Opportunity

The most exciting and significant aspects of this work, in the author's view, lie in the

artistic opportunity and accomplishment it represents.  What we are doing amounts to the

development of a medium and process which is simultaneously new to the fine arts,

significantly different from its predecessors, and of significant intellectual depth.  This

work has been not only about expanding our repertoire of models of natural phenomena

for computer graphics, but also about expanding our visual vocabulary of form through

the potent new dialect of fractal geometry, and about developing the artistic process of
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obtaining self-expression in representational imagery strictly through the access provided

by deterministic formal logic, as embodied in computer programs.

In contemporary art there is a strong emphasis on process, as opposed to product.

Our work is significant not because of the character of the images produced (which are

often deliberately prosaic), but rather because of the character of the process of their

creation.  This process is founded upon, and informed by, the disciplines of computer

science, formal logic, mathematics, and the physical sciences.  Adherence to a purism in

process insures that all of our images are the deterministic result of a computation, and

thus equivalent to a theorem proved in a formal system.  This, we claim, is a novel and

significant result for the visual arts.  This purism-of-process also fortifies the legitimacy

of the images as illustrations of the descriptive power of fractal geometry as a language of

nature and of natural form: the images issue directly from the algorithms; they are not in

any direct sense "of the hand".  Their power in reflecting Nature is encoded entirely in the

terse formalism of the generating algorithm; it is not the result of manual skills of the

artist.  The descriptive power of science and mathematics has been brought to bear in

aesthetic expression.

This work has been motivated largely by the perceived opportunity of developing a

new medium for the fine arts, and of developing this peculiar creative process.  Thus it is

important for the reader to recognize that over the five and one half years that this work

was developed, even more time and effort went into aspects of mastering the medium and

process, than went into aspects of computer graphics research.  While we will not belabor

our artistic concerns in this dissertation, it is hoped that some of the fruit of the aesthetic

labors is recognizable in the images produced; and we will illuminate some ideas about

the significance of this work to the fine arts, in an appendix.
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1.3  Manifesto

This work has been image-driven.  That is to say, the measure of success of the

models developed here has generally been visual appearance rather than, for instance,

scientific veracity.  Thus the emphasis has been more on the creation of realistic-looking

pictures, than on the construction of mathematically  or physically correct models (the

rainbow, mirage and erosion models being exceptions).  Many of the models may seem

ad hoc, but there is an underlying theme: they have been required to be (at least

somewhat) elegant.  That is, they are algorithmically minimal, implemented in a

relatively small amount of C code, and reasonably efficient.  As each subroutine in a

renderer is typically called on the order of millions of times per image, efficiency is a

primary concern in the discipline of image synthesis.  Efficiency is often at odds with

elegance; we have generally required both in our algorithms.  Elegance in our algorithms

is often attributable to their fractal nature, which leads to what Smith [140] has termed

"database amplification": enormous geometric and visual complexity is abstracted into

terse procedural descriptions.  The fractional Brownian motion which is the basis of most

of our visual complexity is an outstanding example of this: the code need simply describe

the construction of a spectral sum with a 1/ f β  power spectrum for a given exponent β .

There can be seen to be two polar extremes in approaches to modelling: the visually

driven "if it looks good, it is good" approach, which we refer as ontogenetic modelling,

and the more rigorous approach of developing computational implementations of

mathematical models taken from the scientific literature, which in its most extreme form

is sometimes referred to as teleological modelling [7].  Early work in the (still-young)

field of computer graphics was primarily of the first sort; as the field matures and ability

to readily produce reasonably good-looking images is more firmly established, the

emphasis is shifting towards the second approach, as exemplified by "physically based"

modelling.  The first approach emphasizes efficiency; the second veracity.  Not
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surprisingly, the first approach generally leads to better-looking pictures more quickly,

while the second leads to impressive-looking technical papers for publication and an

increased understanding of the "right" way to model (as well as, often enough, experience

in how not to tackle modelling problems).

Physical models can entrain great elegance and descriptive power: witness the

spectacular global illumination effects afforded by the semi-physical ray tracing model,

based on the geometric optics associated with the particle model of photons.  They can

also create computational nightmares: consider image synthesis based on the wave model

of photons. [90]  The radiative equilibrium models of radiosity exemplify a middle

ground, where complexity of the implementation is moderate; computation time is

generally significant; and the results striking and highly desirable, yet often suffer

significant visual flaws due to simplifying assumptions.  As the ultimate goal of realistic

image synthesis is to have the right picture for the right reasons, both approaches to

modelling are justified and should be pursued.  As the field matures, the twain shall meet;

in the meantime, work from both ends of the spectrum is justified.  In the author's view,

the key is intellectual honesty: when one is working from the ad-hoc, image-driven or

ontogenetic approach, it behooves us to be clear about what is and is not modelled

accurately and with veracity, and to what extent.

The work presented in this dissertation is perhaps best viewed as breadth-first

research.  The area of realistic imaging of synthetic landscapes was quite immature at the

outset of this work. It is a broad field, as the variety of topics addressed here indicates.

Thus the research presented here comprises a quantity of relatively small results in

disparate areas, united under the umbrella of a common goal: improved landscape

imagery.  It is not a depth-first inquiry into a difficult and picayune problem in computer

science, couched in the context of previous work on similar problems.  Rather it
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represents a survey of preliminary approaches to a variety of problems which shall

continue command the attention of researchers for some time to come.

Most of our technical results were motivated by artistic needs; the rest by recognition

of easy opportunity.  The majority of the author's time has been spent on refining the

artistic process, i.e., developing the procedural approach to realistic image synthesis of

models of natural phenomena, and in mastering the medium, i.e., attaining the goal of

superior craftsmanship by gaining control of the algorithmic processes, of devices for

high-resolution display, and of the nonlinear transformations in color and contrast

involved in color reproduction.  (Unfortunately, most of the work in color reproduction

simply adds up to practical experience, and does not constitute publishable research.

[104])  A significant amount of time and energy has been expended on the highly

subjective, aesthetic tasks of visual composition and color usage; the reward of this has

been effective artistic self-expression.  The net result of our image-driven approach to

research in computer graphics has been the creation of images of aesthetic significance

which simultaneously serve as illustrations of original image synthesis techniques and the

descriptive power of fractal geometry, and as examples of artworks born of a novel

creative process.

The primary purpose of this work has been to illustrate and expand the descriptive

power of fractal geometry as a visual language of natural form.  More specifically, it has

focused on expanding and refining the uses of fractional Brownian motion as the basis for

models of natural phenomena, and clarifying its limitations (e.g., in terrain and turbulence

models).  Significant progress has been made in this, and directions for future work are

clear.
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1.4  Contents and Organization of this Dissertation

This section presents a brief overview of the contents of this document.  Most of the

contents of this dissertation have already appeared in print; rather than specifically name

the publications associated with each section, they will appear as bibliographic

references.

Chapter 1, Introduction, consists of a statement of the thesis of this dissertation, a

section on motivation for the work, a manifesto re the methodology pursued, and this

section describing the contents.  Section 1.1, The Thesis, attempts to specify clearly the

conceptual cohesion of the many seemingly disparate results presented herein.

[91,92,107,108]  Section 1.2, Motivation, is a detailed description of the problems and

opportunities for solutions, seen by the author in the course of this work. [96,107]  The

section is rather lengthy, as it is presumed that the reader has little familiarity with the

concerns addressed, and their context in the discipline of computer graphics.  Section 1.3,

Manifesto, is essentially a statement of method and a justification therefor. [93]  There

are idiosyncrasies in the approach taken in this research which are clarified and put into

context in this section.  Section 1.4, Contents and Organization of this Dissertation, is this

overview of the contents.

Chapter 2, Terrain Synthesis, addresses our work on fractal terrain models.

[100,105,106]

Chapter 3, "Grid Tracing" for Rendering Height Fields, describes our DDA-based

spatial subdivision scheme for efficient ray tracing of terrain models. [94,106]

Chapter 4, Atmospheric Scattering Models, describes the various models of

atmospheric effects developed in the course of this research. [95,98,100]

Chapter 5, Procedural Textures, describes a small part of our work with procedural

textures.  Section 5.1 clarifies and motivates the procedural approach. [91,95,99,100,105]
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The following sections illuminate the process of developing procedural textures, by

presenting some procedural models of planets. [91,99,100,105]

Chapter 6, Conclusions, presents our conclusions and directions for future work. [68]

Appendix A, Parallel Computation Strategies, documents our use of C-Linda [16] in

parallel ray tracing and erosion simulation. [91,92,94,96,100,103,105-108]

Appendix B, A Panoramic Virtual Screen for Ray Tracing, describes a method for

mapping the entire celestial sphere onto the image plane, in image synthesis. [97]  This

represents part of the work done by the author while at the Visualization for Planetary

Exploration Laboratory at NASA Ames, in the summer of 1991.

Appendix C, Essay: Formal Logic and Self-Expression, elaborates on the thesis that

this work represents a significant event in the history of the creative process for the fine

arts. [107]  The text was developed, in part, for invited lectures at the Art and

Mathematics Conference in Albany, New York, in June of 1992, and the Third

International Symposium on Electronic Arts in Sydney, Australia, in November of 1992.

[93]  It consists of a draft essay, still under development, which is to be submitted for the

proceedings the Fourth Symposium on Electronic Arts in Minneapolis, Minnesota in

November of 1993.  This appendix and the next, are included to establish a broader

context for this work.

Appendix D, Mathematics: The Language of Nature, reproduces an essay written for

the inside cover of the 1993 Fractals Calendar. [92]

Appendix E, Color Plates, contains captions for the various color illustrations used to

illuminate points made throughout the text, and the plates themselves.

Appendix F, Curriculum Vitae, consists of the author's current curriculum vitae.
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2.  Chapter 2:  Terrain Modelling

Chapter Abstract

This chapter covers our work in improving geometric models of fractal terrains.  Our

fundamental contributions to the area of terrain modelling have been the development of

point-evaluated heterogeneous terrain models, and erosion processes to be applied to

terrain models to generate drainage network features, fluvial deposits, and talus slopes.

The heterogeneous terrain models expand the repertoire of terrains which may be

described with fractal models, but have no more basis in physics than do conventional,

homogeneous fractional Brownian motion terrain models.  The erosion models, on the

other hand, are derived from the scientific literature of fluvial morphology and represent

physical simulations of natural processes.

Standard fractal terrain models based on fractional Brownian motion (fBm) lack

realism partly because the statistical character of the surface is the same everywhere, i.e.,

it is a homogeneous, or stationary, stochastic function (or at least, it  should be [76]).  To

expand the vocabulary of the fractal language of descriptions of Nature, we present a new

approach to the synthesis of fractal terrain height fields.  In contrast to previous

techniques, this method features locally independent control of the spectral sum

comprising the fBm, and thus local control of fractal dimension, lacunarity, and crossover

scales.  Noise synthesis [106] or rescale and add [134] achieves this flexibility by being



31

point-evaluated, or context-free.  This distinguishes it from Fourier synthesis and

polygon-subdivision schemes, which may not be so flexible.

In noise synthesis, modifications are made to the inner loop of the frequency

summation in the construction of the fractal function, which remains a variation on fBm.

The modifications are sufficiently minor that most of the elegance of the native fBm

model is retained.  Point-evaluation allows the parameterized modifications to vary

locally, without reference to values of neighboring points, hence the context-

independence.  Varying the statistics of the terrain model with altitude or lateral position

yields more realistic first approximations to eroded landscapes.  A slightly more subtle

manipulation of the fBm construction loop is shown to yield a model of terrain on large

scales, e.g., across tens or hundreds of kilometers.

Preliminary physical erosion models are outlined which simulate fluvial, thermal, and

diffusive erosion processes to create global stream/valley networks, talus slopes, and

rounding of terrain features.  At the time of this writing, the erosion models suffer from

numerical instabilities in the finite difference scheme used to model fluid transport.  Thus

they have not yet been used in their foreseen application as computational testbeds for

experimental verification of the published formal transport models of fluvial

geomorphology.  Work is currently underway to fix the transport  problems, so that such

research may commence.

2.1  Introduction

Our contributions in the area of fractal terrain models spring from four basic

observations of fBm based models:  1) Existing fBm schemes are flawed.  These flaws

range from nonstationary statistics [76] or the creasing problem [78] in polygon

subdivision schemes to periodicity in Fourier-synthesis schemes. [152]  2) The small sum

of frequencies used in synthesizing fBm for computer graphics purposes, allows the
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character of the basis function to show through clearly.  The basis function is usually

implicit in the generation algorithm: a saw-tooth wave in polygon subdivision schemes, a

sine wave in Fourier synthesis, a piecewise tri-cubic polynomial in noise synthesis, etc.

Varying the basis function affects the character of the final surface.  3) Pure fBm is

insufficient as a model of natural terrains.  FBm is statistically symmetric across the

horizontal plane; real terrains are not. [78]  FBm is homogeneous (i.e., stationary) and

isotropic; real terrains are not.  4) Terrain models based on fBm lack river networks,

deltas, alluvial deposits, talus slopes and other such erosional features which are salient in

natural terrains.  (This may be seen as part of observation 3, but in practice it raises a

different set of problems.)

Convincing fractal drainage systems are difficult to arrange in the first-order

algorithmic generation of the surface, specifically because they result from global

processes and thereby require global communication in the generation algorithm.  In

nature, drainage systems are due not to the primary orogenesis (mountain-building

process) itself, but to "post-processing" of the uplifted substrate by flowing water and

glaciers.  This indicates the efficacy of generating them by post-processing in synthetic

models as well.

2.1.1.  Origins of Fractal Terrain Models

The origin of fractal landscapes in computer graphics is this: some time ago, Benoit

Mandelbrot noticed the similarity between the trace of fractional Brownian motion over

time, and the skyline of jagged mountain peaks. [77]  He reasoned that this process,

extended to two dimensions, would result in a "Brownian surface" which would provide a

visual approximation to mountains in nature.  Some of Mandelbrot's earliest computer

graphics images were of such surfaces [79] and indeed, they do capture the essence of

"mountain-ness".  Voss and Mandelbrot later used fractional Brownian noises to create
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some very convincing forgeries of nature. [155]  New terrain synthesis methods have

since been proposed by Fournier et al [34], Miller [86], and Lewis. [73]

Most synthetic fractal terrains hitherto have been varieties of fractional Brownian

motion, or, more loosely, 1/ f β  surfaces.  FBm is simply a mathematical phenomena

which happens to resemble (very mountainous) natural terrains.  There is no known,

generative link between the shape of fBm and that of real landscapes.  While this is not

unusual in fractal descriptions of natural phenomena, it sometimes leads to questions

about such descriptions, as noted by Sommerer [142]:

Although physical fractal spatial patterns are frequently observed, a quantitative
connection between the measured numerical value of the fractal dimension and
underlying physics of the process has largely been lacking (exceptions are
[20,47,136,145]).  This lack of connection, while not reducing the utility of
fractals for phenomenological characterization, has led to skepticism about the
ultimate meaningfulness of fractal descriptions in physics. [51,128,129]

Fortunately, our discipline is image synthesis, not physics, and therefore good

ontogenetic descriptions are often more useful to us than thorough teleological ones.

Furthermore, lack of knowledge of linkage does not necessarily imply that there exists no

such link; it may simply be as-yet undiscovered.

2.1.2.  Limitations of FBm Terrain Models

The root of the problem with fBm surfaces as models of natural landscapes traces

back to the fact that fBm was chosen for use as such a model, for purely ontogenetic

reasons: fBm looks like mountains.  But native fBm is a mathematical function designed

to incorporate certain properties.  Chief among these is stationarity: fBm is a stochastic

function which is statistically invariant under translation.  Real terrains decidedly are not.

FBm terrains are statistically symmetrical about the horizontal plane due to the symmetry

of the Gaussian distribution of displacements inherent in their definition.  Again, real

terrains are not.  FBm terrains in general have no global erosion features, in part, because

fBm is by design isotropic and stationary.  Such homogeneity cannot encompass the
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morphology of stream beds.  In practice, fractal terrain models lack drainage features

because of the difficulties inherent in implementation and computation of models of such

global structures, which require global communication and context-sensitivity.   Free of

concerns with computational efficiency, real terrains generate such structures

spontaneously, reliably, and ubiquitously.

In this chapter, we describe a flexible approach to the generation of variable

smoothness and asymmetry in fractal terrain models in the terrain model generation stage,

and suggest a global, physical erosion post-processing process for height fields which

generates both local and global erosion features through a simulation of natural erosion

processes.

2.2  Previous Work

We now review the prior state of the art in fractal terrain synthesis.

2.2.1.  Fractional Brownian Motion

This section describes fBm and methods used for its generation in computer graphics.

In an attempt to convey to the reader an intuitive grasp of fBm, we first offer several

high-level views of fBm.  For a thoroughly detailed presentation, we refer the reader to

the excellent existing literature, particularly Voss [152] and Saupe. [133]

2.2.1.1.  Characterization of fBm

FBm is a stochastic fractal function, which is characterized by its statistical behavior.

Here are several ways of viewing it:

• Definition: FBm is the integral over time of the increments of the path of Gaussian

Brownian motion, i.e., a random walk.
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• FBm is a non-differentiable (read: infinitely wiggly) function of time, with a

characteristic power spectrum (e.g., graph of signal amplitude by frequency): the

power spectrum corresponds to the function 1/ f β , where f  is frequency, and

β ∈ 1,3[ ] .

• FBm is statistically self-affine: its statistics (and appearance) are similar at all scales,

modulo a vertical scaling factor (this need for a different change in vertical scale, with

horizontal scaling, distinguishes self-affinity from self-similarity).

• FBm as a terrain model, is a two-dimensional extension of the (originally) one-

dimensional fBm formalization.

• (Fourier synthesis model:) fBm is a sum of sine waves with random phase, and

amplitude scaled as 1/ f β .

• (Noise synthesis model:) fBm is a sum of band-limited random basis functions, with

amplitude scaled as 1/ f β , where f  is the mean frequency of the band-limited basis

function.

• (Midpoint displacement model:) fBm is a sum of sawtooth waves of successively

doubled frequencies, with Gaussian offsets for peaks, scaled by frequency f  as 1/ f β .

Fractional Brownian motion is perhaps most succinctly described by the Weierstrass-

Mandelbrot function [152]:

V(t) =
f =−∞

∞

∑ Af r
fH sin(2πr− f t + θ f )

(2.2.1)

where A  is a Gaussian random variable, r is the spatial resolution or lacunarity,  θ  is a

uniform random viable in the range [0,2π] providing a random phase, and H is the

Hölder exponent, which determines the fractal dimension.  The Weierstrass-Mandelbrot

function is basically an infinite sum of sine waves at discrete frequencies and with
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random phase, with a certain size gap between successive frequencies (the lacunarity),

and an exponent H which scales amplitude by frequency.  Amplitude relates to frequency

f by the plot of the power spectrum [152]

SWM ∝ 1
f H +1

(2.2.2)

and hence the result is referred to as 1/ f  noise.

The important point to note here is that pure fBm is composed of a sum of sine waves

of discrete frequencies, with random phases, and amplitudes related to frequency by the

1/ f β  weighting.  Thus fBm for computer graphics purposes is generally constructed by

summing discrete frequencies of some basis function, with the proper amplitude scaling

for each frequency.

2.2.1.2.  Band-Limiting

Note that the Weierstrass-Mandelbrot function involves an infinite sum, generally a

bad idea for computer programs which are expected to terminate.  It also contains an

unbounded range of frequencies while, as prescribed by the Nyquist sampling theorem,

digital displays have an upper limit to the spatial frequencies they can accurately

reproduce.  Thus, fBm for computer graphics is always discretized band-limited fBm, that

is, fBm composed of a finite sum of discrete frequencies.

What does this mean, in practice?  It means that we generally construct fBm as a sum

of about three to eight frequencies of the basis function -- a relatively simple, fast

operation for the computer.  Note that we state a lower limit of three octaves of the basis

function for fBm; with less than three octaves any claim of self-similarity or adherence to

a particular characteristic power spectrum becomes rather vacuous.
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2.2.1.3.  Generation of fBm

FBm generation methods can be categorized, for the purposes of computer graphics,

into procedural and non-procedural methods.  Procedural models are evaluated when and

where needed, at rendering time, whereas non-procedural models are evaluated globally

and stored in advance of rendering.  Non-procedural methods, such as polygon

subdivision, are generally fast and easy to implement.  Procedural methods, specifically

noise synthesis, [106] are flexible, memory-efficient (as only visible parts of the model

need be computed), and simple, given an implementation of the basis (i.e., "noise")

function.  They are not particularly efficient, in terms of computing time, as the noise

function generally requires many floating point operations to evaluate.  Nevertheless, due

to the flexibility and elegance of the procedural approach, noise synthesis remains the

author's fBm generation method of choice.

For background on procedural means for generating fBm and other stochastic

procedural textures, see Gardner [39], Lewis [72,73], Mandelbrot et al [74], Musgrave et

al [105,106], Perlin [119], Saupe [134], Stam et al [146], and van Wijk. [160]

2.2.1.4.  Terminology

We now give a very brief description of some the mathematical terminology

associated with the generation of fractal terrains.  For greater depth, see Saupe. [133]

We define Df  as the fractal dimension of the surface, DE  as the Euclidean dimension

of the surface, and H as the fractal dimension parameter.  (Note that previous authors

specifically, Bouville [15] and Miller, [86] sometimes erroneously refer to H as the

fractal dimension.)  For terrain models DE = 2  and Df = 3 − H DE .

The fractal dimension Df , Euclidean dimension DE , fractal dimension parameter H,

and spectral exponent β  of 1/ f β  noise or fBm are related as:
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Df = DE +1 − H = DE + 3 − β
2

(2.2.3)

It follows that β = 1 + 2H  and H = β −1
2

.  Since DE = 2 , for our purposes,

Df = 3 − H = 7 − β
2

.  Note that H is in the interval [0,1] and β  is in the interval [1,3] for

fBm, by convention.  Outside this range,  the function may not formally be fBm.

Fractional Brownian motion in one dimension is a stochastic process X(t)  with a

power spectrum S( f ) scaling with f  as

S( f ) ∝ 1
f β (2.2.4)

where β  is referred to as the spectral exponent of the fBm and is in the interval [1,3].

FBm itself is not a stationary process, but its increments I(∆t) = X(t + ∆t) − X(t) are;

that is, the expected value of I(t,∆t)  is zero for all t  and ∆t  and the variance σ 2  of

I(t,∆t)  does not depend on t .  In the special case of Brownian motion, H = 0.5 and σ 2

varies as ∆t2 H .  Thus for H = 0.5 increments are uncorrelated; for H > 0.5 (as in fractal

terrains, where H is approximately equal to 0.8) increments are positively correlated; for

H < 0.5 they are negatively correlated (corresponding to a very rough surface).  In more

than one dimension fBm is a random field X(x, y,...) with X  on any straight line being a

1/ f β  noise.

Crossover scale is the scale at which fractal character vanishes.  Upper crossover

scale is heuristically defined as the scale where vertical and horizontal displacements are

equal.  Thus, for a mountain range rising from sea level to peaks which are at most one

kilometer high, the upper crossover scale is one kilometer.  Lower crossover scale would

be the smaller scale at which the surface becomes smooth and non-fractal.

Lacunarity generally refers to gaps in fractals [77]; here it can be thought of as the

gap between frequencies composing the fBm of the fractal terrain.  Thus when iteratively
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summing the frequencies composing fBm, if the frequency f i  added at stage i  is a

multiple λ  of f i−1,

f i = λ f i−1 (2.3.5)

then λ  is the lacunarity of the fBm.  While lacunarity affects the texture of the fBm, this

effect is usually only noticeable for λ > 2.  Thus we usually let λ = 2 , as lower values

involve more computation for a given frequency range of fBm and larger values can

affect the surface appearance.

2.2.2.  Fractal Terrain Models

Most fractal terrain models have been based on one of five approaches: Poisson

faulting [77,155], Fourier filtering [77,82,155], midpoint displacement [34,73,78,86],

successive random additions [155], and summing band-limited noises. [37,86,134]  The

approach we have developed is of the last type, which we will refer to as the noise

synthesis method.  We will now briefly review these five techniques (for a more detailed

review, see Voss [152] and Saupe [133]).

2.2.2.1.  Poisson Faulting

The original terrain generation technique employed by Mandelbrot [77] and Voss

[155] was Poisson faulting.  The Poisson faulting technique involves applying Gaussian

random displacements (faults, or step functions) to a plane or sphere at Poisson

distributed intervals.  The net result is a Brownian surface.  This approach has been

employed to create fractal planets by Mandelbrot and Voss. [77]  It has the advantage of

being suitable for use on spheres for creation of planets.  Its primary drawback is the

O(n3 ) time complexity.
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2.2.2.2.  Midpoint Displacement

Midpoint displacement methods were introduced to the computer graphics

community as an efficient terrain generation technique by Fournier, Fussell, and

Carpenter. [34]  We classify the various midpoint displacement techniques by locality of

reference: wireframe midpoint displacement, tile midpoint displacement, generalized

stochastic subdivision, and unnested * subdivision.

Pure wireframe subdivision is used only in the popular triangle subdivision scheme

[34] and involves the interpolation between two points in the subdivision process.  Tile

midpoint displacement involves the interpolation of three or more non-collinear points; it

is used in the "diamond-square" scheme of Miller [86], the square scheme of Fournier et

al [34], and the hexagon subdivision of Mandelbrot and Musgrave. [78]  Generalized

stochastic subdivision [73] interpolates several local points, constrained by an

autocorrelation function.  Miller [86] also proposed an unnested "square-square"

subdivision scheme.

Wireframe and tile midpoint displacement methods are generally efficient and easy to

implement, but have fixed lacunarity and are nonstationary due to nesting (see Miller [86]

for a disposition of the resulting artifacts).  Generalized stochastic subdivision and

unnested subdivision schemes are stationary; the former is flexible but not particularly

easy to implement, while the latter features fixed lacunarity and is very simple to

implement.  Note that all midpoint displacement techniques produce true fractal surfaces

[108] but simply have the wrong statistical characteristics to qualify as pure fractional

Brownian motion. [76]

* For an explanation of the "nesting" issue, see Mandelbrot. [78]
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2.2.2.3.  Successive Random Additions

Successive random additions is a flexible unnested subdivision scheme.  When points

determined in previous stages of subdivision are re-used, they are first displaced by

addition of a random variable with an appropriate distribution.  Previous points need not

be re-used; new grid points to be displaced can be determined from the previous level of

subdivision by linear or nonlinear interpolation.  Successive random additions features

continuously variable level of detail, which is useful for zooms in animation, and

arbitrary lacunarity.  The lacunarity λ depends on the change of resolution at successive

generations; time complexity of the algorithm is a function of λ and the final resolution R.

The successive random additions algorithm is easy to implement.

2.2.2.4.  Fourier Synthesis

Fourier synthesis generates fBm by taking the Fourier transform of a two dimensional

Gaussian white noise, then multiplying it in frequency space with an appropriate filter,

and interpreting the inverse Fourier transform of the product as a height field.

Alternatively, one can simply choose the coefficients of the discrete Fourier transform,

subject to the proper constraints, and interpret the inverse Fourier transform as above.

[133]  Advantages of this approach include the availability of arbitrary lacunarity and

precise control of global frequency content.  Disadvantages include periodicity of the

final surface, which can require that substantial portions of the computed height field

patch be discarded, the O(n logn)  time complexity of the FFT algorithm, the level of

complexity of implementation, and lack of local control of detail.

2.2.2.5.  Heterogeneous Models

The issue of statistical symmetry across the horizontal plane in fractal terrain models

has been addressed by Mandelbrot and Voss [77,155] through the use of nonlinear

scaling in a post-processing step, and by Mandelbrot [78] through the use of random
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variables with non-Gaussian distributions in the displacement process.  These approaches

yield peaks which are more jagged and valleys which are smoother, but they still lack

global erosion features.  A global river system, created algorithmically at terrain

generation time, has been demonstrated by Mandelbrot and Musgrave [78] but with less-

than-satisfactory results, e.g., the resulting surface is far too regular to appear

convincingly natural (see Plate 2.1).

2.2.2.6.  Summing Band-Limited Basis Functions

What we call noise synthesis can be described as the iterative addition of tightly band

limited frequencies, each of which has a randomly varying, or "noisy", amplitude.  Noise

synthetic surfaces have been used by Miller, [86] Gardner [37] and Saupe. [134] Miller

has used Perlin's procedural 1/ f β  noise [87] as a displacement map [22] to add detail to

the (otherwise straight) edges of polygons tessellating a Brownian surface of similar

spectral content.  Gardner has interpreted his noise function, based on a "poor man's

Fourier series" [39] (actually a variation of the Mandelbrot-Weierstrass function) as a

height field.  The quantization of altitude values of the height field yields terraced land,

such as mesas.  Our approach differs from Gardner's in that we exercise local control over

frequency content based on the amplitude of existing signal and other functions.  The

Perlin noise function is notably more isotropic than Gardner's noise function, and is not

periodic; Gardner's terrains and textures suffer visible artifacts due to these factors.  In

addition, Gardner's noise function requires some critical values of the constants for good

results, which values must be determined through subjective experimentation.  Driven by

table lookups, the Gardner noise function is much faster than the Perlin function.

Saupe independently developed an approach to noise synthesis similar to ours; he

terms it rescale and add.  Saupe's publication of that work featured an emphasis on

mathematical foundations, while ours have emphasized applications.  For a thorough
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mathematical treatment of the issues of noise synthesis which is complimentary to this

document, see Saupe. [134]

2.2.3.  Erosion Models

Kelley et al [61] have used empirical hydrology data to derive a system for the

generation of stream network drainage patterns, which are subsequently used to

determine the topography of a terrain surface.  This approach features the global

dependence necessary for realistic fluvial erosion patterns, and has a strong basis in

measurements of real physical systems.  This approach to modelling fluvial erosion is

relatively efficient; what it lacks is the detail of a fractal surface.  While the stream

network may be fractal, the "surface under tension" used for the terrain surface is not, and

cannot be readily made so without disturbing the drainage basins and stream paths.

We propose a simple fluvial erosion simulation in which water is dropped on each

vertex in a fractal height field and allowed to run off the landscape, eroding and

depositing material at different locations as a function of energy and sediment load of

water passing over each vertex.  The erosion laws are taken from the literature of fluvial

geomorphology. [3,135]  The model features the global communication necessary to

create global features, and is slow despite the O(n)  time complexity.  We also present a

global model for simulation of what we refer to as thermal weathering.  While fluvial

erosion creates valleys and drainage networks, thermal weathering wears down steep

slopes and creates talus slopes at their feet.  The thermal weathering simulation can create

realistic results in much less computing time than the fluvial erosion simulation, and is

also O(n)  in time complexity.  Diffusive erosion simulation is trivial; it simply consists

of a progressive low-pass spatial filter over time.  These models are discussed in section

2.4.
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2.3  Original Terrain Synthesis Models

We now present our original models for fractal terrain synthesis.  First we describe

our basis function, the so-called "noise" function, then we describe how we use it to

generate novel terrain models.

2.3.1.  Noise Function

Noise-synthetic terrain generation is accomplished by the addition of successive

frequencies of a band-limited "noise" function.  The source of the noise we use is a

version of the Perlin [119] noise function.  The ideal noise function for our purposes

would be monochromatic (i.e., single-frequency), homogeneous (invariant under

translation), and isotropic (invariant under rotation).  The Perlin function supplies a band-

limited signal of random amplitude variation; it is stationary and nearly isotropic.*

The Perlin noise function N:Rn → R  is implemented as a set of random gradient

values defined at integer points of a lattice or grid in space (of dimension n = 1, 2 , 3, or

4) which are interpolated by a cubic function.  At lattice points in space (points in space

with integer coordinates), the value of the function is zero (a zero crossing) and its rate of

change is the gradient value associated with that lattice point.  The trajectory of the

function, given by the gradient value at the integer points, is interpolated at non-integer

points with the cubic function y = 3x2 − 2x3 , which interpolant features second derivative

continuity and zero rate of change at the end points, where x = 0 and x = 1 (see Figure

2.1).  Since the gradient might be, for instance, increasing at two consecutive lattice

* It is geometrically impossible to reconcile the three criteria of monochromaticity, stationarity, and
isotropism in a multidimensional Perlin noise function.  If the frequency of an n  dimensional Perlin

function is f  along the axes of the grid upon which it is defined, then the frequency will be n f  along
the long diagonal of that grid.
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points i  and i +1, there may also be a zero crossing between lattice points (see Figure

2.2).  This gives rise to frequencies in the noise function higher than f , f  being the

primary frequency which is that of the spacing of the integer lattice.

Figure 2.1.  The cubic interpolant y = 3x2 − 2x3  of the noise function.

Figure 2.2.  The trace of the noise function.

The noise function can be modified to have an arbitrary, non-zero value at the lattice

points.  This increases the variance of the function, but adds low frequency components

to the signal which cannot be controlled or subsequently removed [73]; this has

implications for the statistics of the surfaces to be generated.  For an analysis of the

spectral characteristics of such a noise function see Saupe. [134]

The band-limited Perlin noise function  N(
r
p)  outputs a signal with a fixed lower

frequency f  equal to half the frequency of integers in the domain   
v
p∈Rn .  To scale the

frequency of N  by a factor u , one simply performs a scalar multiplication   u
v
p  of the

domain vectors supplied to N .  This has the effect of scaling the reference points in the
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noise lattice, producing the desired frequency shift in the output of N .  We will see this

practice used below.

2.3.2.  Local Control of Statistics

We now begin to describe how we have employed the flexibility of procedural

methods to construct terrain models of improved realism.

Subjective observation of natural landscapes reveals that in certain types of mountain

ranges there is a marked change in the statistics of the surface as one moves from the

foothills to the highest peaks.  The foothills are more rounded, while the higher

mountains are more jagged.  Sometimes, as in the eastern slope of the Sierra Nevada, the

entire mountain range rises in a relatively short distance from a nearly flat plain.  This

change of character can be characterized as a change of fractal dimension Df , crossover

scale, or both.

Using the noise synthesis technique we can easily devise terrain models with such

features, by modulating the power spectrum of the surface as a function of horizontal

position and/or vertical altitude, or of prior values in the spectral sum.  These techniques

produce heterogeneous terrain models.  Note that we might also refer to such models as

nonstationary, but as history has imbued that term with a pejorative cast in fractal terrain

modelling [76], we prefer to use the term "heterogeneous".

We will begin our exposition with a description of a procedural construction of

homogeneous fBm.  We will then describe our modifications to this algorithm, for

generating heterogeneous terrains.

2.3.2.1.  Homogeneous Procedural FBm Construction

Homogeneous fBm is simply a stochastic function with a 1/ f β  power spectrum, for

β ∈[1, 3]. In a procedural context it  may be described as:
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fBm

v
p( ) = N

v
f i( )

i=1

n

∑ ϖ i

where  
v
p  is the point at which the function is evaluated, n  is typically between 3 and 12,

N  is the basis (e.g., "noise") function,  
v
f i =

v
pλi  (usu. lacunarity λ =2.0), and ϖ = λ−0.5β

(a constant, determining the fractal dimension Df ).  The randomness in the function is

embodied in the noise function N .

Below is pseudo-code for Noise-based fBm:

fBm(  
v
p , H, r, n )

result := Noise(  
v
p  )

for octave := 2 to n

 
v
p  :=  

v
p  * r

amplitude := pow( r, -H * octave )
result := result + amplitude * Noise(   

v
p  )

return ( result )

where H is the fractal dimension parameter, r is the lacunarity (usu. equal to 2.0), and n is

the number of octaves.  Note how terse the fBm specification is.

C code to generate such fBm might look like:

double fBm( point, spectral_exp, lacunarity, octaves );
Vector point;
double spectral_exp, lacunarity, octaves;

{
register double, i, result, amplitude, frequency=1.0;

result = Noise3( point );
for( i=octaves-1; i>0.0; i-- ){

point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;
frequency *= lacunarity;
amplitude = pow( frequency, -spectral_exp );
if ( i < 1.0 ) amplitude *= i; /* for octaves remainder */
result += amplitude * Noise3( point );
if (amplitude < VERY_SMALL) break;

}
return( result );

} /* fBm() */

where point is the point at which the function is being evaluated; omega, the fractal

dimension parameter, is typically ~0.5; the lacunarity lambda is almost always 2.0 (in

fact, this might as well be hard-coded); and octaves determines the number of
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frequencies in the spectral sum (note that the variable name "octaves" is only

appropriate when lambda equals 2.0, as "octave" implies a frequency doubling).  This

fBm function rolls off the remainder of the floating point value of octaves, for smooth

transitions in adaptively band-limited textures.

Note that this function should not be regarded as statistically-accurate, as Saupe has

shown [134] that the cubic polynomial interpolant employed in the noise functions affects

the power spectrum of the final discretized fBm sum in unexpected ways.  The power

spectrum of Perlin's "Turbulence()" function [119] is, for instance, 1/ f 3 rather than

the expected 1/ f 2.  Therefore, we should regard this and the other versions of fBm

functions described here as parameterized versions of random fractal functions, the

parameter values of which are to be interpreted subjectively rather than empirically.

Formal correspondence between parameter values and fractal statistics could be

established using the results described by Saupe, but we have not found this to be

necessary or useful for successful computer graphics practice.

2.3.2.2.  Local Modulation of Fractal Dimension

In our procedural approach, fractal dimension can be modulated locally by varying β

with position.  This is a flexibility previously unavailable in fBm generation schemes.

Plate 2.2 shows a patch which is planar on the left, to space filling on the right (modulo

the upper and lower crossover scales, which are approximately 7 and 1/128, respectively).

In this case, we have β = x−1  (corresponding to H =
1
x
−

3
2

), and x  in the interval (0,1].

In Plate 2.3, we linearly change fractal dimension Df  from 2 (H = 1, β = 3) to 3

(H = 0, β = 1) on the right.  Note that this is not the same as going from planar (1/ f ∞ ) to

filling all of 3 space (1/ f 0), as in Plate 2.2.
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2.3.2.3.  Fractal Statistics by Altitude

We now begin to describe our heterogeneous procedural terrain models.  Our first

model varies the spectral exponent in the spectral summation by the magnitude of the

contribution of previous, lower frequencies.  The idea is to keep the terrain smooth near

an artificial "sea level", while allowing it to get rougher at higher altitudes, in a first

approximation to naturally occurring, eroded terrains.

2.3.2.3.1.  The Algorithm

Presuming that our basis (e.g., noise) function N:Rn→R  has a range in the interval

[−1,1], we may wish to translate N  by a constant ct  so that it is, for instance, always or

nearly always positive (the sign will be important in later iterations).  We may also wish

to scale N  by a factor cs  to reduce or expand its range (the positive portion of which we

may wish to keep normalized to a maximum value of 1, for instance).  In the patch

illustrated in Plate 2.4, we insert the lowest frequency first:

  
A0 = N

v
f 0( ) + ct( ) cs + c0

where A0  is the initial height of a point in the height field,   
v
f 0  is the initial object space

coordinate vector,   
r
p0, of the height field position being calculated, and c0  is an offset

constant which determines the zero value or "sea level" of the terrain.  Note that   
v
f 0  can

be an element of R2  or R3, depending on the arity of the noise function domain.

Iterating fBm noise at lacunarity λ > 1 requires that, at iteration n , the frequency

added is proportional to f 0λ
n( )−0.5β

.  Setting the lowest frequency f 0 = 1 gives a

frequency increment at iteration n  of λ−0.5βn .  Thus we have for the altitude Ai  at stage

i > 0:

  
Ai = Ai−1 + Ai−1 N

v
f i( ) + ct( )csϖ

i
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where ϖ = λ−0.5β  (a constant) and   
v
f i =

v
pi−1λ .  Note that for a noise function N:R2 → R ,

we have   
v
f i =

v
p0λ

i .  For N:R3 → R , we may have   
v
f i ≠

v
p0λ

i  due to vertical displacement.

To clarify, here is pseudo-code for the algorithm.  Note that it is only a minor

modification to the fBm routine described above.

hfBm(  
v
p , H, lacunarity, octaves, sea_level )

result := Noise(  
v
p  ) + sea_level /* Noise: R3 → −1, 1[ ] */

for octave := 2 to octaves

 
v
p  :=  

v
p  * lacunarity /* lacunarity usu. ≅2.0  */

amplitude := pow( lacunarity, -H * octave )
result := result + min( 1.0, result ) + amplitude * Noise(   

v
p  )

return ( result )

Below is C code implementing this algorithm.  The point is not to show the details of

the code, but rather its brevity.

/* heterogeneous fractional Brownian motion routine */
double
hfBm( point, omega, octaves )

Vector point;
double omega, octaves;

{
register double lacunarity, a, o, prev;
register int i;
register Vector tp;

lacunarity = 2.0;  a = 0.0;  o = omega; tp = point;
/* get initial value */

a = prev = 0.7 + Noise3( point );
for( i=1; i<octaves; i++ ) {

tp.x *= lacunarity; tp.y *= lacunarity; tp.z *= lacunarity;
/* get subsequent values, weighted by previous value */

prev = prev * o * ( 0.7 + Noise3(tp) ) ;
a += prev;
if (prev < SMALL) break;
o *= omega;

} /* for */

return( 0.15/omega * a );
} /* hfBm() */

2.3.2.3.2.  Discussion

This algorithm does not use a uniform spectral exponent β  for all frequencies: it is a

monotonically decreasing function, as frequency increases, bounded above by the "base"

fractal dimension which is the highest dimension attainable in the terrain.  This amounts

to modulating both lower crossover scale and fractal dimension with altitude.  Yet it is
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not even as simple as that: the spectral exponent, which determines the fractal dimension,

varies with frequency, since altitude also varies with frequency as the spectral summation

proceeds.  We have not yet elegantly characterized the complex statistical behavior of this

and the below heterogeneous fractal functions.

It is interesting to note that subjective experience indicates that modulation of

crossover scale is more important than modulation of fractal dimension, for generating

realistic looking terrain.  That is, it is not so much that terrains have different roughnesses

at different locations, as that they have a rather uniform roughness, but expressed at

different scales.  That changing crossover scale alone would have such a dramatic effect

is not surprising, for as Mandelbrot has pointed out [80], the fractal dimension of the

Himalayas is approximately the same as that of the runway at the JFK airport; it is simply

that the lower crossover scale of the latter is on the order of millimeters while that of the

former is on the order of hundreds of kilometers.  Future work in terrain models might

profit from experiments with models of uniform fractal dimension, but heterogeneous

crossover scales.

2.3.2.3.3.  Results

Plate 2.5 is a rendering of a detail of a 50x 50  patch similar to that in Plate 2.4.  Note

that the triangles, which are barely visible due to bump mapping but can be discerned

around the snow-covered peak, are quite large in comparison with the overall image.  By

including only relatively low frequencies in the terrain, and leaving high frequency

details to the texture map, we can get realistic terrains from very small height fields.

Such height fields can be rendered very rapidly.  In Plates 2.4 and 2.5, as in subsequent

plates of terrain patches, λ = 2 .

Plate 4.2 illustrates a convincing model of ancient, heavily eroded models produced

by the above terrain model.  Here the difference in statistics between the (visible) low
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areas and the peaks is relatively small, and the fractal dimension is quite low throughout.

Such smooth, rolling terrain could not be generated by standard polygon subdivision

algorithms, as it requires a smooth basis function, rather than a saw-tooth wave.  Careful

inspection reveals that the polygons tessellating the terrain surface are very large indeed

-- note the piece-wise linear ridgelines.  Thus the terrain model is composed of relatively

few polygons, and renders very rapidly.

In Plate 2.6 the spectral exponent varies with both altitude and horizontal position.

Here we have:

  
A0 = F x( ) N

v
f 0( ) + ct( )cs + c0

with F x( ) = 2x, 2 − 2x  , assuming that x  varies from 0 to 1.  To give the ridge a more

natural path than that of a straight line, we add some noise to x  before calculating F x( ) .

The contribution of higher frequencies is again scaled as:

  
Ai = Ai−1 + Ai−1 N

v
f i( ) + ct( )csϖ

i .

2.3.2.4.  Modulating Lacunarity

It is readily apparent that the global value for lacunarity λ  is subject to exact user

control in the noise synthesis scheme.  Computational cost in the creation of a model

instance varies directly with the number of frequencies used.  Generally, there is some

desired bandwidth for a given fractal model, dictated by display resolution, available

storage space, desired level of geometric detail, etc.  Cost per unit bandwidth varies as the

inverse of the lacunarity.  Thus surfaces generated with small lacunarity will be more

expensive to compute than those with large lacunarity.

Due to the point-evaluated character of the noise synthesis method, we may also

exercise local control over lacunarity.  This can be accomplished by displacing the initial

coordinate   
v
p0 supplied to the noise function by a vector valued noise function   

v
N  (e.g.,
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Perlin's "DNoise()" [119] ).  The effects of such local change of lacunarity are shown in

Plate 2.7b where we modulate intensity I  on the image plane as:

  
I = N

v
p0 +

v
N

v
p0( )( ).

Note that local change of lacunarity interferes with the precise local control of

frequency, as it amounts to expanding the band limits of the basis function.  While it is

not immediately apparent that this local modulation of lacunarity is enormously useful for

terrain synthesis, it has demonstrated value in the synthesis of textures such as clouds,

smoke, and flames.  The function illustrated in Plate 2.7b may be used as a novel basis

function for the construction of fBm.  Again, due to the small (usu. ~ 3 −12 octaves, at

lacunarity λ = 2 ) spectral sums used in constructing fBm for computer graphics

purposes, the character of the basis function shows through clearly in the result.  Compare

the fBm constructions in Plate 2.7c & d.  A variation of the fBm shown in Plate 2.7d is

used in the clouds appearing in Plates 1.2 and 1.3, providing a "feel" to the cloud texture

hitherto unavailable.  Presumably, similar terrain models would also have a unique "feel"

or appearance, but we have not to date experimented with such models.

2.3.2.5.  A Large-Scale Terrain Model

The simple observation that local minima (valleys) should be smoother at all scales

has led us to develop a novel terrain model, which turns out be useful for representing

terrains on very large scales.  Over large distances heterogeneity in topography is salient:

plains, rolling hills, foothills, and alpine areas might all be present in a large area of

terrain.  This kind of variety is not present in naive fBm, which again is designed to be a

homogeneous and isotropic function.  Such heterogeneity in a fractal terrain model is

useful, however, not only as a novel type of terrain model in its own right, but also in

realistic modelling of terrains on planetary scales.  Such capability is required to realize
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our goal of situating our realistic landscape scenes in a coherent, global context,

eventually to be explored interactively, perhaps in a VR (virtual reality) setting.

A surprisingly simple variation of the fBm functions described above allows us to

generate highly heterogeneous terrains, which are more appropriate to very large scale

terrain modelling than prior fractal terrain models.  This model has applications in both

planetary modelling (see Plate 4.3) and more local terrain modelling (Plates 2.8 and 2.9).

2.3.2.5.1.  The Algorithm

In the above model, we made the fractal statistics of terrain models a function of

altitude and spatial position.  The observation that local minima (valleys) on all scales

should fill up with debris and thereby become smoother than local maxima, led to the

following construction, in which the amplitude of subsequent (higher) frequencies

 
vi = N

v
f i( ) in the spectral sum are weighted by the amplitude of the previous (lower)

frequency vi−1:

Ai = Ai−1 +
F vi−1( )vi

f i
β

where F v( )  is displaced, scaled and clamped linear function of v:

F v( ) =
1 : v < 0

0 : v > cc

v

cc

: o.w.













The dynamics of this spectral construction is perhaps more clear in pseudo-code:

Terrain(  
v
p , H, lacunarity, octaves, offset, threshold )
signal  := 0.5 * ( Noise(  

v
p  ) + offset ) /* scale to range of 1 */

result := signal
for octave := 2 to octaves

 
v
p  :=  

v
p  * lacunarity

amplitude := pow( lacunarity, -H * octave )
weight := clamp( signal/threshold, 0.0, 1.0) /* clamp to interval [0, 1] */
signal := weight * 0.5 * ( Noise(   

v
p  ) + offset )
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result := result + amplitude * signal
return ( result )

Below is C code implementing this algorithm.  Again, the point is not to show the

details of the code, but rather its brevity.

/* a highly heterogeneous fractal terrain function */
double Terrain( point, spectral_exp, lacunarity, octaves, offset, threshold )

Vector point;
double spectral_exp, lacunarity, octaves, offset, threshold;

{
register double i, result, amplitude, frequency=1.0;
register double signal, weight;

signal = result = 0.5*(offset + Noise3( point ));
for( i=octaves-1; i>0.0; i-- ) {

point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;
frequency *= lacunarity;
amplitude = pow( frequency, -spectral_exp );
if ( i < 1.0 ) amplitude *= i; /* for octaves remainder */
/* weight successive contributions by previous signal */
weight = signal / threshold;
if ( weight > 1.0 ) weight = 1.0;
if ( weight < 0.0 ) weight = 0.0;
signal = weight * 0.5*(offset + Noise3( point ));
result += amplitude * signal;
if (amplitude<VERY_SMALL || weight<VERY_SMALL) break;

}
return( result );

} /* Terrain() */

Comparing this code to that for homogeneous fBm, as seen in Section 2.3.2.1, we see

that the elegance of the fBm model has not been too severely compromised, yet we have

gained much complexity in the statistical behavior if the resulting fractal function.

2.3.2.5.2.  Discussion

The operative feature of this algorithm is that subsequent contributions of higher

frequencies are weighted by the (displaced) value of previous, lower frequencies.  Thus,

once a local minimum has been established at a particular frequency, all higher frequency

contributions will be small-to-zero, keeping that area "smooth" at smaller scales.  This is

equivalent to a monotonically-decreasing power spectrum, or a monotonically-increasing

spectral exponent.  The fractal dimension of the function will never exceed that specified
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by the spectral exponent β , but can be lower-to-flat at any scale.  Thus we have

stochastically modulated the fractal dimension, upper crossover scale, and bandwidth of

the spectral sum.

Note that this algorithm is fundamentally flawed, as an implementation of the stated

intention.  That idea was to smooth out local minima at all scales, in imitation of valleys

filling up with dirt, mud, etc.  This algorithm smoothes out areas where there is a local

minimum in a higher frequency in the current spectral sum, not in the resulting function.

The minima in higher frequencies may occur where the local slope of the existing terrain

is arbitrarily steep, due to the previous contributions of lower frequencies.  Correct

implementation of the idea would require knowing the local derivative of the sum-to-

date.  This should be implemented in the future.  The current model, flawed though it

may be, has nevertheless proved a powerful descriptor of natural terrains.

2.3.2.5.3.  Results

This model is useful for modelling very large-scale terrain, as seen in Plate 2.8: it can

generate plains in some areas, rolling hills in others, and jagged alpine mountains in still

others.  Again, this better mimics the appearance of Earthly terrains than the

homogeneous fBm usually used for fractal terrain models, but with little added

complexity in the generation function or compromise to the fundamental elegance of the

naive fBm model.  One way to think of this model is that fBm represents the simplest

possible form of complexity -- a precisely defined spectral sum -- whereas this model

bumps up the complexity by a notch: there is a complex, stochastic definition of the

spectral sum itself.

In Plate 4.3 we have used the model in the creation of continents on an Earth-like

planet.  Note that the fractal dimension, or "wigglyness", of the coastline varies widely
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from place to place; also, we have areas of the continents which are rather bland and

featureless, along with highly complex and detailed behavior in other areas.

Plate 2.9 illustrates the utility of the model in creating more interesting terrains on the

local scale.  Here we have used   1− abs N
v
p( )( ) as the basis function.  Taking the absolute

value of the (cubic polynomial) noise function introduces discontinuities in the derivative

of the surface, which create ridges at all scales.  This is the heterogeneous version of

terrain model in Plate 4.1 (rendered non-procedurally, i.e., with fixed level of detail)

2.4  Dynamic Erosion Models

The terrain models described above were designed as attempts to create convincing

emulations of eroded landscapes, at terrain generation-time.  They are fairly successful in

increasing both realism of fBm-based terrains and the repertoire of landforms which can

be so represented.  Yet there remain many aspects of erosion features in Nature, which

are not addressed by these models: stream and river networks, alluvial fans, deltas, talus

slopes, lakes, glacial valleys, cirques, moraines, etc.  The most difficult to model of these

are the globally coherent features, notably the drainage networks associated with rivers

and glaciers.

Such globally-coherent features require global communication, or context sensitivity.

Without it, problems such as avoiding self-intersection of riverbeds cannot be reliably

solved.  Context sensitive problems are notoriously difficult to solve in a computationally

efficient manner.  In this section we offer a preliminary presentation of some dynamic

erosion processes, designed to be used on existing terrain models in a post-processing

pass to add some of these challenging but important morphological features.  One of

these models deserves no claim of computational efficiency; the other two are reasonably

efficient in generating the desired features.  Unfortunately it is, of course, the former

algorithm and its intended results which are of by far the greatest interest.
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Of all the areas addressed in this dissertation, this is the least developed.  Work is

very much underway in refining and extending the models and results discussed here.

Thus we disclaim this as a preliminary presentation of preliminary results.  The promise

of this research is great, as are the difficulties faced (primarily in obtaining a stable,

efficient numerical solution to the nonlinear partial differential equations involved in

modelling fluid transport, and their boundary conditions).  Work in the area will proceed

into the foreseeable future.

Our erosive processes fall into three categories: fluvial erosion, thermal weathering,

and diffusive erosion.  Hydraulic erosion is that caused by running water.  What we term

"thermal weathering" subsumes the non-fluvial processes which cause rock to flake off

steep inclines and form talus slopes at their bases.  Diffusive erosion includes processes

which transport substrate laterally, without regard to local slope (i.e., whether uphill or

downhill).  In this section we will illuminate these erosion simulation algorithms.

2.4.1.  Fluvial Erosion

The fluvial erosion model involves depositing water ("rain") on vertices of the height

field and allowing the water, along with sediment suspended therein, to move to lower

neighboring vertices.  The erosive power of a given amount of water is a function of its

volume, the local slope of its transport path and the amount of sediment already carried in

the water; this function is known as the erosion law. [3,135]

The fluvial erosion model is implemented by associating with each vertex v  at time t

an altitude at
v , a volume of water wt

v  and an amount of sediment st
v suspended in the

water.  At each time step, we pass excess water and suspended sediment from v  to each

neighboring vertex u .  The amount of water passed, ∆w , is defined as:

∆w = min wt
v , wt

v + at
v( ) − wt

u + at
u( )( )
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If ∆w  is less than or equal to zero, we simply allow a fraction of the sediment suspended

in the water at v  to be deposited at v:

at+1
v = at

v + Kdst
v

st+1
v = 1− Kd( )st

v

This amounts to asymptotic settling out of suspended sediment in standing water.

Otherwise, we set

 

wt+1
v = wt

v − ∆w

wt+1
u = wt

u + ∆w

Cs = Kc∆w

Here, Cs  is the sediment capacity of ∆w .  When passing sediment from v  to n , we

remove at most this amount of sediment from st
v and add it to st+1

u .  If Cs  is greater than

st
v, a fraction of the difference is subtracted from at

v  and is added to st+1
u , which

constitutes the erosion of soil from v .  Finally, we allow a fraction of the sediment

remaining at v  to be deposited as above.  Thus, if st
v ≥ Cs , we set:

st+1
u = st

u + Cs

at+1
v = at

v + Kd st
v − Cs( )

st+1
v = 1− Kd( ) st

v − Cs( )

Otherwise:

st+1
u = st

u + st
v + Ks Cs − st

v( )
at+1

v = at
v + Ks Cs − st

v( )
st+1

v = 0

The constants Kc , Kd , and Ks are, respectively, the sediment capacity constant, the

deposition constant and the substrate softness constant.  Kc  specifies the maximum

amount of sediment which may be suspended in a unit of water.  Ks specifies the softness

of the substrate and is used to control the rate at which "bedrock" is converted to
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sediment.  Kd  specifies the rate at which suspended sediment settles out of a unit of water

and is added to the altitude of a vertex.

Through the above process water and, more importantly, substrate mass from higher

points on the landscape is transported to and deposited in lower areas.  This movement

constitutes the communication necessary for modelling the global process of erosion.

Unfortunately, it also involves finding a numerical solution to some challenging

nonlinear partial differential equations, and current work is focusing on finding a

reasonable solution thereto.  (As the author's primary area of interest and expertise is

computer graphics, not numerical analysis, the involvement of other researchers in this

project is essential.)

The resulting features bear reasonable resemblance to natural erosion patterns (see

Plate 2.11).  Ongoing research is concentrating on constructing a more sophisticated,

physically accurate model, based on the erosion laws of the literature of fluvial

geomorphology. [3,135]

Plates 2.10 and 2.11 show a 200x200 terrain patch before and after 2000 time steps of

fluvial and thermal erosion.  The erosion simulation required approximately 4 hours of

CPU time on a Silicon Graphics Iris 4D/70 workstation.  In this simulation, Kc = 5.0 ,

Kd = 0.1, and Ks = 0.3.  Note the gullies, confluences, and alluvial fans that have

appeared in the eroded patch, which is rendered as a dry wash, i.e., without water present.

The uneroded patch shown in Plate 2.10 demonstrates a reasonable first

approximation to an eroded landscape with a central stream bed.  The uneroded patch was

created by weighting the addition of always-positive noise values by the distance d  of

the point from the diagonal of the patch, which diagonal is also "higher" at the far end.

The stream bed is made non-linear by the addition of an fBm offset to the distance d .
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This patch demonstrates the flexibility of the noise synthesis method for terrain

modelling; it did not require much time to construct.

The distribution of rainfall on landscapes in nature is strongly influenced by

adiabatics, or the behavior of moisture-laden air as it rises and descends.  As air rises, it

cools and the relative humidity rises.  When the relative humidity becomes great enough

clouds form; when the clouds become sufficiently dense, precipitation occurs.  Wind

blowing over mountains causes air to rise as it passes over the mountains, thus

precipitation is much greater in the vicinity of mountain peaks.  It is easy to include a

rough approximation of adiabatic effects in our erosion model by making precipitation a

linear function of altitude.  This has a significant effect on the erosion patterns produced.

Obviously, some complexity could be introduced by attempting to model prevailing

winds, rain shadows, seasonal variations, etc.

In our use of the fluvial erosion model, we have simply allowed a fixed amount of

rain (approximately one one-thousandth of the height of the vertex) fall at regular

intervals (approximately every sixty to one hundred time steps).  Mandelbrot [81] has

shown that records of flooding of the Nile river show a 1/ f  noise distribution, i.e., large

floods happen with low frequency.  A correspondingly noisy distribution in the rainfall

rate would constitute a more realistic simulation of nature.  It is probable that it would

have a long-term effect on the erosion features created: hundred-year and thousand-year

floods may well, after all, exert a greater morphogenic influence than all the intervening

years of less dramatic erosion.  This is an idea that has yet to be explored.

2.4.2.  Thermal Weathering

Another erosion process we model is "thermal weathering", which is our catch-all

term for any process that loosens substrate, which subsequently falls down to pile up at

the bottom of an incline.  The thermal weathering process creates talus slopes of uniform



62

angle.  Thermal weathering is a kind of relaxation process and is both simple and fast.  At

each time step t+1, we compare the difference between the altitude at
v at the previous

time step t  of each vertex v  and its neighbors u  to the (global) constant talus slope* (T ).

If a neighbor is lower than the talus slope, we then move some fixed percentage ct  of the

difference onto the neighbor.

at+1
u =

at
v − at

u > T : at
u + ct at

v − at
u − T( )

at
v − at

u ≤ T : at
u





With care taken to assure the equitable distribution of talus material to all neighboring

vertices, the slope to the neighboring vertices asymptotically approaches the talus angle.

Plates 2.12 and 2.13 show a patch created with non-uniform lacunarity before and

after slumping or thermal weathering.  This process has created a rough approximation of

sand dunes.

2.4.3.  Diffusive Erosion

Diffusive erosion processes, also known as dry creep, essentially amounts to a

progressive spatial low-pass filter over time.  The dynamic of the process, caused in

nature by bioturbation (as by the footfalls of grazing animals) and sediment transport by

raindrop splashing, consists of the rounding-off of sharp features, both peaks and valleys.

It is trivially implemented by transporting a quantity of substrate in each time step, as a

function of local slope:

at+1
u = cd at

v − at
u( )

* The talus slope or angle of repose is a fixed angle or slope which is characteristic of rubble of a given
size, shape, and composition.  Piles of rubble with sides steeper than this will spontaneously collapse under
the influence of gravity; slopes at or below this slope are stable.
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where cd  is the coefficient of diffusion.  This process is exactly equivalent to repeated

convolution with a low-pass filter kernel, as the diffusive transport mechanism may move

material uphill as well as downhill. [13]

2.4.4.  Discussion of Erosion Models

Again, this write-up represents a preliminary exposition of preliminary results.  Many

extensions of this model have already been implemented, but are not yet sufficiently

developed to merit careful documentation.  The models represent a rich area for future

research.  We now mention a few of the foreseen (and, in some cases, already realized)

extensions, modifications, and applications of this work.

One extension accounts for the differing hardnesses of bedrock, silt, and talus.  This is

accomplished by adding appropriate fields to the vertex data structure and making the

simplifying assumption that silt is on top of talus, which is in turn on top of bedrock.

Hardness increases from silt to bedrock.  Another simple and interesting extension is to

modulate the hardness to the bedrock: this can be done in strata, as in sedimentary rock,

or with a space-filling fractal field of hardness values.  Either can be easily implemented

with a procedural solid texture, as described in Chapter 5.  (See Plate 1.2 for an example

of a sedimentary strata texture.)

Creating animations of erosion will be trivial, as it is a dynamic process which need

only be imaged at every n  time steps and played back in sequence, to yield a

visualization of the process acting through time.  It is hoped that the process of

orogenesis (mountain building) and perhaps the creation of features like the Grand

Canyon could be produced using a combination of the techniques mentioned above.

Other problems, such as the realistic rendering of landscapes including running water,

dry washes, deltas, alluvial fans, etc., may keep researchers occupied for some time to

come, as they do not seem to admit to obvious, simple solutions.
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2.5  Conclusions

We have demonstrated some novel methods for generating fractal terrain models of

enhanced realism.  These models include terrain generation-time models of erosion

features and heterogeneity that enhances their resemblance to natural terrains.  The noise

synthesis modelling method derives most of its power from its point-evaluated,

procedural nature.  It can be utilized in procedural rendering of terrain models with

adaptive level of detail, as described in Chapter 3.

Our generation-time erosion models have been supplemented by dynamic erosion

models which create globally context-sensitive features which are difficult to include in

generation-time algorithms.  These erosion models represent work in progress, and offer

rich potential for future research.

The net results of this work has been a substantial improvement in the fidelity and

variety of "fractal forgeries of Nature" we can create.
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Chapter 3:  Grid Tracing  for Rendering Height Fields

Chapter Abstract

In this chapter we present a fast and memory-efficient algorithm for ray tracing height

fields.  The algorithm takes advantage of the regularity and spatial coherence of the

height field structure, which consists of a regular, square lattice of altitude values.  It

employs a modified Bresenham DDA* to traverse this two dimensional array.  At each

cell of the grid, the altitude of the ray is compared with the heights of the four corners of

the cell; ray/object intersections need only be calculated when the altitude of the ray is in

the range of those heights.  The average number of ray/triangle intersections performed is

about two per ray; the two triangles tested for intersection are located in O N( ) time

where N  is the number of height values in the field.

This chapter is based on a technical report written in 1988 [94], thus some of the

references to specific hardware platforms may be dated.  As such specific references are

always of ephemeral relevance, we have not brought them up to date at the time of this

writing in early 1993.  Subsequent progress by other researchers has clarified the place of

this algorithm in the field of height field ray tracing algorithms: while other algorithms

* DDA stands for digital differential analyzer, which is the standard algorithm for line drawing in raster
graphics.  It is designed to efficiently identify, given two endpoints, which pixels a line between them will
traverse.  It does this by an incremental traversal method, moving from one endpoint to the other.  This is
exactly analogous to the problem of identifying which cells of a height field a ray traverses, proceeding out
from its origin.
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have been shown to be faster [82,115], grid tracing remains the most memory-efficient of

published schemes.

3.1  Introduction

Grid tracing is a fast, memory-efficient algorithm for ray tracing height fields.  A

height field is a data set composed of a two dimensional array of altitude values, which

are generally interpolated in two dimensions to describe a surface.  Grid tracing is

essentially a fast method for traversing this data structure and testing bounding volumes,

which takes advantage of the spatial coherence and intrinsic ordering of a height field.

The problem that motivated this work is that of ray tracing fractal terrains [34,35,77,154],

specifically large height fields with huge number of triangles tessellating the surface.*  In

a naive ray tracing algorithm, the time required to ray trace a scene is a function of the

number of primitives in the scene; most of the computing time in ray tracing is spent on

calculating ray/object intersections. [127,158]  Many schemes to reduce the number of

ray/object intersection tests have been devised. [5,36,41,58,59,82,127,141,156]  Grid

tracing is similar to the 3DDDA scheme used by Fujimoto [36] to reduce the number of

ray/object intersections, in its incremental traversal scheme, but grid tracing is a more

efficient approach, albeit one limited to rendering height fields.  With grid tracing, height

fields become a new primitive object for ray tracing, joining the set of usually-simpler

primitives such as spheres, planes, polygons, cylinders, cones, etc.  As such, height fields

can be incorporated into general ray tracing systems such as that of Snyder et al. [141]

There are at least two other published algorithms for ray tracing height fields: the

quad-tree approach outlined by Kajiya [54] and Mastin et al [82], and the more recent

* We use triangles to tessellate the surface because A) planar primitives are the fastest to ray trace (the
line/plane intersection being particularly easy to calculate), and B) two triangles can create a planar
decomposition of the four non-coplanar points at the corners of a square height field cell.
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"parametric" approach by Paglieroni et al. [115]  The quad-tree scheme is similar to grid

tracing in that it is a bounding-volume scheme for paring unproductive ray/surface

intersection tests.  It is based on a hierarchical decomposition of the height field into

successively smaller squares, with successively tighter bounding volumes.  It has been

shown by Paglieroni et al [115] and Pharr [122] to be significantly faster than grid

tracing.  The parametric approach is based on the concept of distance estimators [114]

borrowed from the computer vision literature.  It relies on precomputed parameter

planes, which in turn may require O n2( )  comparisons of all height field altitude values to

create.  Once in place, they facilitate large incremental steps across the height field,

which rapidly converge on the desired ray/surface intersection.

What distinguishes those two algorithms from grid tracing, is their overhead in

memory.  Memory constraints are a significant concern as the sheer size of the height

field data set can easily overwhelm the memory capacity of any commonly available

computer.  Grid tracing incurs no significant overhead in memory, if a fixed-sized cache

for the objects (e.g., triangles) tessellating the surface is used (a strategy that is of equal

importance to the other schemes).  Both the quad-tree and parametric algorithms require

significant memory for storage of their auxiliary structures.  Thus, for a given fixed

allotment of real memory, we can render larger height fields with  grid tracing than with

the competing schemes.

An approach which eliminates the need for external storage of the height field data set

is procedural rendering. [15,54,68,86]  It applies only to synthetic terrain models, and

cannot be used for measured terrain data such as USGS DEMs.*  In a procedural

* USGS DEM ≡  United States Geological Survey digital elevation map.  These are readily available
elevation data sets corresponding to the USGS "quads", or topographic maps.  They are the most commonly
imaged height field data sets, perhaps followed by planetary data from Mars, Venus, and certain moons of
the gas giant planets.  (See Appendix 2.)
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approach, the model is not computed until a ray "violates its airspace".  As the algorithm

determining the morphology of the surface is deterministic, no information describing the

primitive polygons which compose the surface need be computed and stored in advance

of rendering.  Thus savings in external storage space is exchanged for increased

computation time (evaluation of the model, which usually requires significant

computation, may need be repeated at a specific location if the results are not stored or at

least cached).  An advantage of procedural rendering schemes is that the level of detail in

the representation of the surface may be dynamically changed for the purposes of

animation.  Drawbacks of procedural schemes include increased computation time and

difficulty of implementation. [149]

The grid tracing approach is designed to for rendering height fields of fixed spatial

resolution.  To date, all such height fields have been precomputed, though there are no

significant obstacles to procedural creation of the height field data, on-the-fly, at

rendering time.  While grid tracing does not immediately accommodate changing height

field resolution (i.e., level of detail) with distance or for a dynamically changing point of

view,* rendering precomputed height fields is generally much faster than any published

procedural scheme.

This idea for ray tracing a height field, as opposed to a procedurally generated

surface, was generated out of necessity.  Procedural definitions of terrain surfaces rely on

some knowledge of the shape of the projected area covered by the polygons in the patch

of terrain, for use in determining ray/surface intersections.  As part of ongoing research

with Prof. Mandelbrot, polygon subdivision schemes for generating fractal terrain models

* Recently Anderson [2] has modified the grid tracing code in Rayshade [67] to accommodate
multiresolution rendering.  In this scheme, height fields of the same terrain patch, at a variety of spatial
resolutions, are loaded into the renderer.  As rays proceed away from their origin, they automatically switch
to lower-resolution grids as a function of distance.  While "cracks" may appear in the surface due to
discontinuities at the boundaries between of different resolution, striking results have nevertheless been
obtained in imaging Magellan data from Venus. [109]
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were developed [78] which, while starting with a simple convex polygon such as a

triangle or hexagon, evolve into terrain patches with fractal edges.  (See Plate 2.1)  This

happens because the polygon subdivisions used do not "nest" neatly* , as does the

common scheme of subdividing an equilateral triangle into four equilateral triangles by

joining the midpoints of the edges.  Because the successive stages of subdivision do not

nest, the shape of the area covered by a polygon after subdivision is difficult to

determine.  What that shape is, depends on the subdivision scheme being used and on the

number of levels to which the recursive subdivision will be performed.  For these

reasons, a procedural definition of our terrain models was deemed impractical.

3.2  The Algorithm

This is how the grid tracing algorithm works: A two dimensional array of altitude

values is traversed in an arbitrary direction by a ray, using a modified DDA algorithm.

The array is thought of as composing a grid of small square cells (corresponding to the

pixels being illuminated by a DDA algorithm).  Each cell has associated with it the

altitudes of the four corners of the cell.  As the ray traverses the array of cells, the altitude

of the ray at each cell is compared to the four altitudes associated with the cell.

Ray/surface intersection need only be checked when the altitude span of the ray over the

extent of the cell intersects the interval of altitude defined by the lowest and highest of the

four altitudes associated with the cell, i.e., the ray altitude is checked against the

bounding volume of the cell.  For a ray traveling above the surface, the condition can be

stated:

min rayznear
, rayz far( ) ≤ max hi, j , hi, j+1, hi+1, j , hi+1, j+1( ) (3.1)

* For an explanation of the "nesting" issue, see Mandelbrot. [78]
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where the rayz  represent the altitudes of the end points of the ray segment within the cell

and the hi, j  represent the altitudes of the height field H at the four corners of cell i, j .  As

a surface linearly interpolating the height values within a cell can be represented with

exactly two triangles (splitting the square diagonally), the ray/surface intersection test

consists of two ray/triangle intersection tests.  Only rays grazing through the crease

between these two triangles will fail the intersection tests; most rays will incline directly

into the surface at the first cell where surface intersection is tested.  Thus this relatively

computationally-expensive ray/plane intersection calculation is performed sparingly and

with an excellent success rate, and most of the work is pushed into the far more efficient

grid traversal calculations.

Advantages of this algorithm are manifold.  First, only the height field need be

calculated and stored as the model.  The actual polygon descriptions (e.g., the plane

equations of the triangles) need only be calculated (and optionally, stored) when an

intersection is tested for.  This can save both time and space in the creation of the terrain

model, as polygons which are not visible in the rendering are never fully described or

stored.  Second, the grid traversal can be accomplished with the use of a modified

Bresenham DDA algorithm.  The Bresenham algorithm is a highly optimized, fast

algorithm which uses only floating point addition* in determining the height of the ray

and the next cell along the path of the ray.  Third, the algorithm is general.  Any two

dimensional array of scalar data (e.g., an image) may be interpreted as a height field and

ray traced with this algorithm.  Fourth, due to the incremental front-to-back traversal

scheme, we are guaranteed that the first intersection found will be the closest; no further

test need be performed.  Fifth, the algorithm performs ray/object intersections in O N( )

* The Bresenham DDA most widely known is an integer algorithm.  The version used for our purposes is
not the integer Bresenham DDA, but rather a slightly less optimal floating point version.  A simpler
alternate scheme could use an ordinary integer DDA for the traversal, but would need to check one cell to
either side of the ray path for possible intersections due to imprecision in tracking that path.
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time, with a very small constant coefficient.  Sixth, this algorithm is nicely amenable to

stepwise implementation and optimization.  Thus the implementation can be tested and

debugged incrementally.

3.3  Implementation

Implementation of this algorithm can be accomplished in the following stepwise

fashion, where each step represents a distinct programming and verification task:

1) Calculate the x, y, z  coordinates of the intersection of the ray with the global

bounding box of the height field.

2) Implement a standard DDA to traverse the grid in x, y  coordinates until the ray

exits the bounding box.

3) Modify the DDA to identify all cells traversed by the ray.  (Line drawing DDA

algorithms do not do this, due to the requirements of maintaining approximately

constant illumination along lines drawn in the raster. [31])

4) Modify the DDA to track the z  (altitude) values of the endpoints of the ray

within each cell.

5) Test the z  values of the ray at each cell against the altitudes at the four corners

of the cell.  If this test indicates that the ray passes between those altitudes at that

cell, proceed with the steps below; if not, go to the next cell.

6) Create two triangles (only the plane description is needed) from the four

altitude values at the corners of the cell.

7) Intersect the ray with the two triangles which tessellate the surface within the

cell.
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8) [Optional] Include an inverse skewing and scaling transformation for the ray,

so the triangles may be equilateral rather than right triangles.

These steps implement the basic algorithm; many optimizations can subsequently be

made.  Note that the optional step 8) turns the height field patch, in world space, from a

square to a diamond shape, but does not affect the shape of the square cells in DDA-

traversal space.  We prefer to tessellate our height fields with equilateral triangles, as this

introduces less bias due to tessellation into the resulting surface and tiling with equilateral

triangles yields the best possible ratio of area covered per unit height field data.

3.3.1  Modified DDA Algorithm

The DDA is the heart of this algorithm.  Traversal of the grid with the DDA is where

most of the CPU time is spent.  There are two fundamental modifications to a line-

drawing DDA which must be made for the purposes of this algorithm:  First, the DDA

must identify all cells traversed by the ray; a normal DDA identifies only one cell per

unit travel along the driving axis.  Second, the DDA must produce floating point

intersection points with cell boundaries, rather than just identifying the integer x, y

coordinate label of a cell, and care must be taken that cells are identified in the order in

which the ray passes over them in its traversal from point A to point B.  The second

required modification makes a pure integer Bresenham DDA unusable for our purposes.

The DDA we have used is an extension of the first Bresenham DDA presented in Rogers.

[125]

The modifications to the DDA are extensive; a sample of the inner loop for rays in

one octant is provided at the end of the chapter.  We note that the number of comparisons

to be performed at each cell (i.e., in the inner loop of the DDA) should be minimized.

Naively, at each cell we must check six exit-of-bounding-box conditions for the top,

bottom, and the four sides of the bounding box, and compare the four altitudes of the cell



73

corners against the values of the two ray endpoints at the cell boundaries.  Careful

construction of the DDA can reduce the number of comparisons, based on information

about the path of the ray (e.g., noting that the ray is traveling in the positive x  and

directions, and negative z  direction can eliminate three exit tests).  Such optimization,

trading increased quantity of code to be written and executed for a faster running time, is

typical of a DDA algorithm.

An optimization we have implemented involves forming a secondary (n −1)  by

(n −1)  grid A :

Ai, j ai, j = max hx ,y , hx+1,y , hx ,y+1, hx+1,y+1( ), 1≤ x, y ≤ n, 1≤ i, j ≤ n −1[ ]

where hi, j  is the altitude of the i, j th position in the height field H and n  is the size of one

side of the square height field.  This grid A  stores the maximum of the four altitude

values for each cell, at the minimum x, y  address of the cell.  By thus precomputing the

right hand side of inequality (3.1) for all cells, we can reduce that inequality to:

rayzmin
≤ ai, j (3.2)

using a priori knowledge of the ray's z  direction to track rayzmin
 without comparisons.

Simply stated, we need only check if the minimum z  value of the ray is less than the

maximum altitude of the cell.  Note that this approach constrains our point of view to be

above the surface of the patch; a similar approach with inverted min and max would

suffice for rays coming from below the surface.

3.3.2  Intersection Tests

The two ray/triangle intersection tests performed at a cell consist of:

1) finding the line/plane intersection for the ray and triangle plane, and

2) clipping the intersection point to the extent of each triangle in the cell.
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The first step is a standard operation in ray tracing; the second step is very fast.  For

the lower left hand triangle of the cell it can be expressed:

if (intersection x >= cell xmin
) &&

   (intersection y >= cell ymin
) &&

   (intersection x + intersection y <= cell xmax
 + cell ymax

)
then intersected = TRUE;

where intersection x ,y[ ]  is the x  or y  coordinate of the line/plane intersection point

and cell x ,y[ ] min,max[ ]
 is the minimum or maximum of the x, y  coordinates of the four

corners of the cell.  Note that the latter are integers.  The first two tests check the

intersection point against the extent of the (square) cell.  The third test checks the

intersection against the diagonal of the cell, which divides the square into two triangles.

In this construction the diagonal (arbitrarily) runs from top left to bottom right.

3.3.3  Memory Requirements

This algorithm is memory intensive, as will be any algorithm designed to efficiently

handle large height fields.  Memory resources are the major limiting factor in rendering

such height fields, as opposed to computational power or time.  We have rendered scenes

containing over 5 million virtual triangles* (a height field of dimensions 16002 ); there is

simply no easy, compact way to store that amount of data.  Several approaches have been

pursued to limit memory use.

The height field is a vector of altitude values.  This vector may be quite large.

Therefore, the data type used for elements of the vector has a direct, linear impact on the

memory requirements of a vector of given size.  In the C language on the system we used,

a variable of type double requisitions 8 bytes, a float takes 4 bytes, an int takes 4

bytes, and a short takes 2 bytes.  To decrease memory requirements, one should use no

* We refer to the triangles composing the tessellation of the surface as virtual triangles because they do not
exist as entities, until they are needed for ray/surface intersection tests.
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more bits than are necessary to encode altitudes to the required precision.  Our first

implementation used the type float for storing the hi, j  and ai, j  altitude values; this is

not an optimal use of memory space, but it is easy to implement.  More recently, with the

assistance of Matt Pharr, we have converted the altitude data type to short, for a savings

of 50% in storage space. [121]  For maximal accuracy, the data values are displaced and

scaled to lie within the vertical span of the overall height field data range.  The high and

low values of this range must be stored with the height filed data for reconstruction.

The only essential data that must be stored is the height field H and, optionally, the A

grid.  When ray/surface intersections are tested, additional data describing the planes of

the two triangles in a cell is generated.  This data may or may not be stored.  If all such

data is stored, it may cause the host machine to run out of available memory; if it is not

stored, it must be recomputed at each test.  Recomputing this data at each test is

undesirable, as some triangles (particularly those in the foreground when the eye is close

to the surface) may be intersected by many rays, thus indicating storage of the triangle

plane data.

Our initial implementation of the plane data structure used four doubles or 32

bytes (clearly not optimal) and dynamically allocated memory for all triangles tested for

intersection, never freeing that memory until completion of the rendering.  With

approximately 3 million triangles, this implementation could exceed the memory capacity

of an Encore Multimax machine, with 64 Mb (megabytes) main memory and 115 Mb

total virtual memory.  Our first solution to this problem has been to implement a circular

queue of plane structures.  Thus we store only the number of plane structures in this

queue (two to four times the length of a scanline in our implementation).  When a new

plane structure is created it uses a pointer to a plane structure in this circular queue,

and the pointer to the plane structure which previously occupied that position in the

queue is set to NULL.  Another approach, for ray casting, is to store just two temporary
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plane structures with the x, y  coordinates of the cell in which they reside.  By checking

the x, y  coordinates before recalculating the plane data, coherence of a triangle on a

given scanline can be used to eliminate repeated calculations; recalculation is only

necessary for each scanline on which the triangle is tested for intersection.

The efficacy of these caching schemes is strongly affected by two factors: the eye

point's position relative to the grid, and reflection, refraction, and shadow ray

propagation.  If the eye point is everywhere distant from the surface, all triangles may be

pixel- to sub-pixel size and will therefore not be intersected by more than a few rays.

Storing only one cell's plane data will often be futile if shadow, reflected, or refracted

rays are propagated.  Thus the hit rate of either caching scheme can vary widely.  The

best scheme to date is the LRU (least recently used) cache implemented by Craig Kolb in

Rayshade. [67]

3.4  Time Complexity

The worst case time complexity of this algorithm is O N( ) where N  is the number

of height values in the field.*  Note that N = n2 , where n  is the size of a side of a square

height field grid.  The time is linear in the number of rays cast at the virtual screen.  Each

ray will traverse the grid with a number of operations proportional to, in the worse case,

2 N( )  for a ray crossing the grid diagonally without intersecting the surface.  The

average case is closer to 
C

2
2 N( ) operations, where C  is the worst case constant

number of operations per cell traversed, and the division by two is due to the expectation

that the ray will intersect the surface, on average, halfway across the grid.

* We ignore the O N( )  overhead in forming the array A  as this is done just once, while grid traversals

have a constant coefficient upwards of the order of 106 , corresponding to the total number of rays traced in
the scene.



77

The number of virtual triangles t  in a height field is:

t = 2 N − 2 N +1( ) = 2 n −1( )2

as the number of cells c  in the grid is:

c = N − 2 N +1 = n −1( )2

and there are two virtual triangles per cell.  The DDA algorithm insures that the first

intersection found will be the closest, therefore the search for ray/object intersections can

be terminated at the first intersection.  As most rays will intersect the surface in the first

cell for which the line/plane intersection test is performed, the average number of

ray/object intersection tests for any N , t  or c  is approximately two.  The worst case is

4 n −1( ) for a ray that skims through a trough that runs diagonally across the grid (quite

unlikely for a stochastic surface).

The low number of ray/object intersection tests is the real advantage of this algorithm.

Naive ray tracing algorithms have a time complexity proportional to the number of

primitive objects in the scene; most of their time is spent in the relatively expensive

ray/object intersection tests.  In this algorithm the time spent calculating ray/object

intersections is small and constant,* and the time complexity is dominated by the

relatively inexpensive search for candidate objects to be intersected with the rays.  Note

that the preprocessing overhead of this algorithm is small as well.  The height field is

calculated just once, in contrast to some procedural algorithms.  The spatial coherence of

the height field obviates potentially costly preprocessing required by some spatial

subdivision algorithms, for sorting primitives and assigning them to the appropriate cells

in a grid or hierarchy.  In a height field, the primitives come pre-sorted, spatially.

* This corresponds to what Kaplan [58] calls "constant time" for his spatial subdivision scheme.



78

It is the inner loop of the DDA traversing the grid which dominates the time

complexity of this algorithm.  As this inner loop involves a small number of inexpensive

operations, we claim that the constant scalar C  to the O N( ) time complexity is small

and that the algorithm is quite efficient.  In our use of this algorithm to ray trace fractal

mountain patches, the execution time of our renderer is dominated by the evaluation of

the procedural solid textures (see chapter 5) used to simulate water, treelines and

snowlines, and clouds.  Thus a typical 1280 by 1024 resolution image of a fractal patch

described by a height field of size 4072  (329,672 virtual triangles) ray traced at 1

ray/pixel may take 24 hours of CPU time on a single National Semiconductor 32332

microprocessor with fast floating point support.  Of this time, only about 8 hours are

spent in ray tracing and determining lighting for the surface; most of the balance is spent

evaluating the procedural textures at ray/surface intersection points.  Generation of the

height field by polygon subdivision typically takes only a few minutes on a machine such

as a Sun 3/60, and while it may take some tens of minutes to generate a large height field,

this time is still considerably less than the time required for rendering.

3.5  Future Directions

Problems with the grid tracing technique include clamping spatial frequencies in

image space.  Distant portions of the height field rendered with a perspective projection

will have arbitrarily high spatial frequencies, leading to aliasing.  This aliasing will be

particularly objectionable in animated sequences where it will cause scintillation on

distant surfaces.  Anderson has solved this problem with the multi-resolution, multi-grid

extension to the grid tracing algorithm mentioned above. [2]

The grid tracing algorithm is amenable to many fine optimizations, mostly in the

DDA.  Other more significant global optimizations are possible.  For instance, Mastin

and Watterberg [82] have suggested a quad tree approach to ray tracing height fields

which is reminiscent of Kajiya's procedural algorithm [54] for stochastic surfaces.  In
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Mastin's approach, the ray altitude is checked against a quadtree of bounding boxes of

decreasing volume which enclose a rectilinear set of subdivisions of the surface (i.e., a

square grid is subdivided into four smaller square grids, recursively).  The data structure

required to store such a tree adds an O log4 N( )  overhead in storage to the cost of storing

the simple height field; this would be prohibitive for the sizes of height fields which we

render with grid tracing.

The idea of a hierarchy of bounding volumes may be borrowed from the quad-tree

scheme, to speed up grid tracing.  By creating a hierarchy of grids, the advantages of a

hierarchical data structure can be combined with the efficiency of the DDA grid traversal.

Such a scheme is similar to that required for an adaptive level-of-detail implementation.

Note that by making the grids smaller through a hierarchy, page faults can be decreased.

Also, the time complexity of the overall rendering algorithm may be affected favorably.

If the height field were placed in a hierarchy of m  by m  grids, the time complexity

would go to O m logm N( ) ,with logm N  time required to traverse the hierarchical

structure, with cost m  for tracing m  by m  grids at all levels.  Note that we introduce an

O logm N( ) overhead in memory for the hierarchical structure.  Thus we are

implementing, in effect, a continuous tradeoff between the speed of the quadtree scheme

(where m = 4 ) and the memory efficiency of grid tracing (where m = n, the dimension of

one side of the grid), parameterized by m .  Craig Kolb has implemented this scheme,

with m  fixed at compile time.  We have used it extensively at m = 16, with good results

(i.e., it runs quickly and does not overburden system memory capacity, with large height

fields).

Grid tracing could be implemented in integer arithmetic.  For example, the bounding

box of the entire grid could be scaled in z  (height) to the full range of the integers,

thereby facilitating tracking of the ray altitude with an integer DDA.  As mentioned

above, the traversal of the grid can be accomplished with an ordinary integer DDA, with
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the added expense of extra ray/surface intersection checks along the path of the ray.

These extra checks are necessary because of error in the calculation of the ray path

intrinsic in an integer calculation.  Due to the current state of computer hardware in which

floating point arithmetic can be as fast as, or even faster than, integer arithmetic, in terms

of CPU cycles required per operation, we have not undertaking an integer

implementation.

The surface of the height field can be represented with a bicubic spline, rather than a

triangular tessellation.  This requires some analysis of the local behavior of the spline, as

the altitude of the surface within a cell might pass above that of the highest altitude at the

corners of the cell.  The behavior of the surface is less easily defined, and therefore

ray/surface intersections are more complicated to compute.  Calculating the intersection

of a ray with a bicubic polynomial using Newton's method, is expensive.  Our

experiments indicate that it is far more efficient, time-wise, to simply fit the spline to the

height field, resample the resulting surface at higher spatial resolution, and render the

resulting height field.

3.6  Conclusions

Grid tracing is an efficient technique for ray tracing a limited class of complex

tessellated objects.  This algorithm has been successfully used to render over five million

unique triangles in a single scene.  Such a scene can easily have all polygons appear at

pixel size or below, thereby eliminating the flat polygonal surfaces from the image of a

tessellated surface.  The major limitation to the use of this algorithm is the real memory

capacity of the host computer (i.e., page faults); this can be ameliorated by implementing

a hierarchical data structure of smaller grids.  The grid tracing technique is general to all

regular height fields, and calls for creative applications.
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3.7  Code Segment of DDA Inner Loop

/* traverse the 2D grid of surface height data */
/* uses a modified non-integer Bresenham DDA */

register double nearZ, farZ, minZ, error, delta, deltaX, deltaY,
deltaZ;
register int xCell, yCell;
double signX, signY;

/* set initial position */
nearZ = intersection_point.z;
farZ = (/* z value of ray at far end of cell */);
xCell = (/* x index of cell at ray intersection with bounding box */);
yCell = (/* y index of cell at ray intersection with bounding box */);
/* set DDA variables */
error = (/* an octant-specific initialization dependent on
            exact (floating point) intersection point with cell */);
delta = (/* delta for error */);
deltaX = (/* delta for x */);
deltaY = (/* delta for y */);
deltaZ = (/* delta for z */);
/* SIGN() returns +1 for a positive argument; -1 otherwise */
signX = SIGN(ray->dir.x);
signY = SIGN(ray->dir.y);
/* inner loop: while still in the grid, traverse.driving axis of DDA is
x axis */
do {

minZ = MIN(nearZ,farZ);
if ( minZ <= HighestAlt[xCell][yCell] )

if ( Intersection(xCell, yCell, ray) )
return;

if ( error > VERY_SMALL ) {
/* check the cell that a normal DDA would skip */
yCell += signY;
if ( (yCell < 0) || (yCell == sideMax) )

/* bounding box has been exceeded */
break;

else
if ( minZ <= HighestAlt[xCell][yCell] )

if ( Intersection(xCell, yCell, ray)
return;

error--;
}

else if ( error > -VERY_SMALL ) {
/* ray crosses at exactly the corner of the cell (unusual)*/
yCell += signY;
error--;
}

xCell += signX;
error += delta;
nearZ = farZ;
farZ += deltaZ;
} while ( (nearZ >= BoxBottom) && (nearZ <= BoxTop) ) &&

  (xCell >= 0) && (xCell < sideMax) &&
  (yCell >= 0) && (yCell < sideMax) );
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Chapter 4:  Atmospheric Scattering Models

Chapter Abstract

In scenes on the scale of landscapes, atmospheric effects are generally salient.  The

most common and important of these effects is the change in color and contrast with

distance known as aerial perspective.  This effect is a critical perceptual cue for

indicating large scale in a rendering, be it a computer graphic or a painting.  Also striking,

if less ubiquitous in Nature, are the rainbow and mirage.  Each of these phenomena is the

result of redirection and/or absorption of light in its passage through the atmosphere, thus

we classify them as atmospheric scattering effects.

Aerial perspective and the rainbow are optical effects dependent on the wavelength of

light, while mirages are not, to any significant degree.  Each of these effects varies with

spatial location.  Thus we present geometric models of the density distributions which

modulate aerial perspective and the mirage, and describe a rainbow model based on

geometric optics.  Spatial variations having been determined, we develop models of the

interaction of light with the participating medium.  This takes the form of a variation on

Beer's Law [19] for aerial perspective, of the Fresnel equation for the mirage, and of both

for the rainbow model.  In Fournier's taxonomy [32] of models of natural phenomena, our

models range from "impressionistic", in the case of the aerial perspective model, to

"physical", or what Barr [7] might classify as "teleological", in the case of the rainbow

model.
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4.1  Some Methods for Aerial Perspective

In this section, we present our models for aerial perspective.  Our Rayleigh scattering

model is a simple rgb-space extension of Beer's Law.  This is not a physical model, yet it

reflects the most essential behavior of natural systems.  We also present some geometric

models for aerosol density distributions, which serve  well for production image synthesis

and could be incorporated in scattering models of greater physical veracity.

4.1.1  Introduction

A critical factor in the realistic appearance of synthetic terrain images is the sense of

grand scale provided by aerial or atmospheric  perspective: the change in color and

decrease in contrast, or changing to blue-grey, of objects seen in the distance.

Atmospheric perspective has been known for hundreds of years by landscape painters

[40] to be as important a distance cue as the more-familiar geometric perspective,

wherein size varies as the inverse of distance and parallel lines converge to so-called

"vanishing points".  Cartographers also have used aerial perspective for over a hundred

years, as an aid to visualizing topographic data in map making. [50]

It is important to note that synthetic terrain models and digital elevation maps

(DEMs) are simply abstract data sets which, when properly interpreted visually, may

resemble the surface of a landscape; as such, they have no intrinsic scale.  Thus in our

renderings we must provide visual cues which indicate the intended grand scale of real

terrain.  For this reason, it is worth developing realistic, efficient models of atmospheric

scattering which faithfully reproduce the observed behavior of Nature.  (See Plate 4.1.)

For the purposes of production image synthesis, we wish to derive elegant and

computationally efficient models, and to avoid the over-modelling that sometimes

accompanies physically-accurate simulations. [32]
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As Blinn has noted [12], modelling scattering involves two distinct problems:

devising geometric models of aerosol density distributions, upon which the optical

density of scattering depends, and integrating the scattering & attenuation of light over

arbitrary optical paths through these density distributions.  The first problem boils down

to deriving plausible density distributions which are efficiently-integrable.  The second

deals with modelling the effects of the participating medium on the propagation of light;

these effects include extinction and scattering,* and the dependency of such effects on

wavelength or color.  For the purposes of production image synthesis efficiency is of

paramount importance in both types of model, as we wish to maintain the elegance and

accuracy of per-ray computation of atmospheric effects.  (This may be contrasted to, for

instance, the interpolation of sparse samples proposed by Klassen. [64] )

It is well known that physically accurate models of atmospheric scattering are

computationally impractical, for the purposes of production image synthesis. [12,18]  We

will show that reasonably good subjective approximations to the physical behavior of

Nature can be had through some relatively simple constructions, which are sufficiently

efficient to use on a per-ray basis in production image synthesis.  These models may

serve as a basis upon which to build models of greater physical veracity.

4.1.2  Problem Statement

Despite the rich supply of scientific literature on the topic, a general light-scattering

model remains an open problem in computer graphics.  It is conceivable that a relatively

straightforward solution is available, however, that solution will most likely be

computationally intractable for the purposes of production image synthesis, due to the

* For our discussion, we define extinction as the removal of light energy along an optical path by
absorption or scattering out of the path, and scattering as the redirection of light energy towards the origin
of the optical path, i.e., as (only) towards-the-eye scattering.
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complexities of photon propagation and energy transfer in multiple and frequency-

dependent scattering.  Yet the appearance of terrestrial terrains on the large scale is

strongly affected by scattering, particularly wavelength-dependent Rayleigh scattering: it

is Rayleigh scattering which gives distant mountains their purple cast; makes sunsets red;

gives direct sunlight a yellow hue; and makes the sky blue, thereby causing areas not in

direct sunlight to be illuminated with a cool, bluish hue. [40]

Correct calculation of the illumination I  at the origin (eyepoint) of optical path p  in

the presence of Rayleigh scattering requires solving the integral equation:
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where τ  is a function of aerosol density; the first term in the second integral over p  is the

phase function which is a function of θ , the angle between the optical path and the light

source I0 ; the second term is the Rayleigh scattering coefficient which is a function of the

refractive index η , the molecular density N  at u , and wavelength λ ; the third term is

the extinction occurring between point u  and the origin of the optical path; and the fourth

term represents the light reaching u  from the light source, as extinguished over path l .

This formulation is for a single light source and does not account for shadows.  It is valid

for single-scattering only; multiple scattering is more complex.

Wishing to avoid the complexities inherent in solving equation (4.0) and its more

accurate descendants, we propose a non-physical, computationally-efficient, practical

alternative to a physically- or empirically-based implementation of Rayleigh scattering.

Our model is sufficient as a first approximation to Rayleigh scattering, and is surprisingly

simple to implement.  Its cost is little more than that of an ordinary "fog" function which

features no frequency-dependent behavior, aside from the fog's intrinsic color.  It may be

argued that this model represents the distillation and generalization of physical scattering
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models, making their essential behavior practically available for production image

synthesis.  It embodies the basic principle of frequency-dependence or color-dependence

in scattering, abstracted from concerns with the geometry of scattering and atmospheric

structure.  Our model may be evaluated efficiently, freeing us from the need for image-

space sample interpolation, lookup tables, or other such speedup schemes.

The atmosphere of the Earth and other planets is not homogeneous: its density varies

exponentially with altitude, and optical paths not limited by intersection with some object

are limited by the curvature of the atmosphere around the planet.  Thus we will also

develop some aerosol density distribution functions for use with the (independent)

scattering models.  Like our scattering model, these density models are designed to be

simple, computationally-efficient approximations to the behavior of the Earth's

atmosphere.  These density models could be employed to improve published physically-

based implementations of Rayleigh scattering.  Coupling them with our scattering model,

we obtain something that is in some ways superior to more physically accurate models: it

is much faster, much easier to implement, and can actually look better than a physically-

based single-scattering Rayleigh model.  (We make the latter claim based on experience

with several, independent implementations of such physical models.)

It should be stressed that the geometric aerosol density distribution models are

entirely independent of the scattering model.  Thus they may be employed in conjunction

with more accurate scattering models, if desired, to improve both the accuracy of the

simulation and the image results obtained.  While we will develop our scattering model in

the rgb color space, it is also worth stressing that it could be implemented using a vector

of frequency samples in the CIE xyz color space [163], the resultant of which is

subsequently transformed to an rgb value for display.  Again, it is the goal of this work to

present the simplest, most elegant possible distillation of the relevant effects.

Complications and improvements are quite easy to add.
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4.1.3  Previous Work

Effects of participating media -- primarily atmospheric effects -- have been modelled

since Whitted's "Foggy Chessmen". [157]  Scattering of light by a participating medium

should be a primary term of the rendering equation [56]; this fact is sometimes

overlooked.  Researchers who have addressed scattering problems in the literature include

Blinn [12], Kajiya et al [57], Klassen [64], Max [83,84], Musgrave [98], Nishita et al

[111], and Rushmeier et al. [130]  Some of these models include scattering effects which

depend on the frequency (i.e., the color) of the light; most do not.

Klassen has described a detailed physical* model of Rayleigh scattering. [64]

Unfortunately, this model is simultaneously too complex to admit to efficient

implementation and too simple to model nature adequately: the functions involved are

expensive to integrate; the assumptions about the distribution of atmospheric aerosol

density are simplistic; and the single-scattering model is inadequate, particularly for short

wavelengths and when the sun is close to the horizon.  In a single-scattering

implementation of Rayleigh scattering, sunsets appear to have a red horizon, fading to a

dark olive-colored sky above -- clearly not a very realistic simulation of Nature.  This

appearance can be improved by adding an ambient term which varies with altitude to

represent multiply-scattered light, particularly blue and violet light, but a physical basis

for such an ambient term has not been described in the scientific literature, thus the

physical legitimacy of the model is compromised.

Klassen sidesteps the issue of multiple scattering by making the assumption that it is

acceptable to simply color the background a uniform shade of blue, the intensity of which

* We will refer to Klassen's model as a "physical" model as a matter of computer graphics convention, as it
is based on a model from the scientific literature.  However, Lord Rayleigh's scattering model is, in fact, an
empirical model rather than a teleological model derived from first principles; thus Klassen's model may be
argued to be "empirical", rather than "physical".
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is not physically or empirically justified.*  As we will require the flexibility of having

arbitrary view points, including those outside of the atmosphere, this assumption would

be unworkable even if it were deemed intellectually acceptable.

Many practitioners seem to have used versions of the exponential mist aerosol

distribution function described here, for some years now.  Nevertheless, other than simple

descriptions of Beer's Law [19] for simulating homogeneous fog, there seem to be no

descriptions of more complex geometric models of aerosol density distributions in the

commonly-available graphics literature.  Thus, while some of these results may not be

unprecedented, this may represent the first publication of their full technical description.

4.1.4  Homogeneous Fog

The simplest atmospheric scattering function is a homogeneous, isotropic fog, as

described by Beer's Law. [19]  This function displays the same behavior at every place

and in every direction, so the only parameters of import are the extinction coefficient and

the color of the fog.  The extinction coefficient ε  (or coefficient of absorption) is defined

to be the portion of light scattered per unit distance δ .  The product εδ  of the extinction

coefficient and the distance travelled is the dimensionless quantity τ , called the optical

depth or the optical thickness. [144]  The transparency  σ  of the fog along the optical

path is an exponential function of the optical depth τ = εδ :

σ ε,δ( ) = e−εδ = e−τ (4.1.1)

The transparency σ:1→ 0 as distance δ :0 →∞ ; the opacity along the optical path (in a

single-scattering model) is 1− σ .  The illumination sample I  which a given ray

* The hue of such a background color should at least correspond to a λ−4 spectrum, λ  being wavelength.
Klassen, however, indicates [64] that the shade of blue for the sky thus derived in CIE XYZ color space
may be out of gamut for the average monitor.  This, as well as increased complexity, contraindicates the use
of XYZ color in a Rayleigh scattering model.
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represents is a function of the value calculated by the surface shader at the end point of

the ray, Is, and the contribution of the atmosphere Ia  along the ray path:

I = σIs + 1− σ( )Ia (4.1.2)

Note that this is not a physical model: there is no provision for shadows or crepuscular

rays (i.e., beams of light) in the atmosphere and there is no attempt to balance energy

transfer; and Ia  is simply an rgb or frequency vector-valued color for the fog.  It does,

however, simulate nicely the decrease in contrast with distance that characterizes real fog,

smoke, and haze.

We stated above that opacity equals 1− σ , i.e., that extinction exactly equals

scattering in the direction towards the ray origin.  This may not hold in Nature or for a

multiple-scattering model.  Furthermore, for aesthetic purposes in image synthesis we

may wish to exert independent control over the scattering and extinction.  Thus we may

wish to calculate different values of σ  for scattering and extinction.  We may accomplish

this by using different coefficients ε  for scattering and extinction.  While this increases

flexibility, it also contributes to the undesirable proliferation of parameters for the user to

deal with, which often characterizes models of natural phenomena. [87]  Experimenting

with separate ε  parameters represents an area for future research.

4.1.5  Exponential Mist

Our next step towards increased realism is to make the density of the atmospheric

effect vary exponentially with altitude.  Lynch [75] has shown such exponential

distribution of scattering aerosols to be responsible for the visual appearance of
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successive mountain ridges receding in the distance; indeed, the construction presented

here represents a clarification of his rather convoluted derivation of the same model.

In this model, the extinction coefficient ε  varies with altitude; to get the optical depth

we require the average value of ε  over the optical path.  We get this by integrating ε

over the vertical interval traversed in the optical path and normalizing by the width of the

interval.  Thus we require an exponential function which is readily integrable.  The

function f x( ) = e− x  is ideal, as

eαx∫ dx =
1
α

eαx + c (4.1.3)

for real α ≠ 0.  The constant c  introduced by the integration can safely be ignored for

our purposes.  For α = −1 we have:

e− x∫ dx = −e− x (4.1.4)

To get the extinction coefficient ε  we need the definite integral of the function over

the vertical span of the ray.  We obtain ε  by taking that integral, and normalizing by the

width of the span z2 − z1 , the zi  being the altitude values of the ray endpoints.

Substituting z  for x  in equation (4.1.4) we get:

τ =
1

z2 − z1

e− zdz
z1

z2

∫ =
1

z2 − z1

−e− z1 + e− z2( ) (4.1.5)

The transparency σ  is again given by equation (4.1.1).

Should the difference z2 − z1  be small enough to risk floating point division problems

(as in the case of horizontal and nearly-horizontal rays), we assume that the difference in

density between z1 and z2 is insignificant and substitute the expression:

ε = e− z1  (4.1.6)

Note that we could also use the mean of z1 and z2:
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ε = e
−

z1 + z2

2




 (4.1.7)

but in practice we have found this unnecessary.

Plates 4.1 and 4.2 illustrate the effectiveness of this exponential atmosphere as a scale

cue.  Again, terrain models are of visually indeterminate size without atmospheric effects;

addition of the mist effectively gives the visual impression of the grand scale intended.

The realism of the atmospheric effect can be further enhanced by the inclusion of our

Rayleigh scattering approximation, which makes the more distant peaks appear bluish in

Plates 4.1 and 4.2.
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4.1.6  Radial Fog or Planetary Atmosphere

Again, optical paths in Nature are limited by curvature of the atmosphere around the

planet; the above models do not account for this.  We now describe a model which does.

4.1.6.1.  Motivation

The two atmospheric functions described above require that rays which miss

everything in the scene be limited to a reasonably short path length, lest the atmosphere

integrate to complete opacity, thus rendering the background in the fog's intrinsic color

(e.g., white).  The path length of stray rays can be limited by placing a limiting object

such as a vertical plane behind the scene, or by varying the ray tracer's definition of the

default path length of a ray which fails to intersect any object, but alas, both of those

solutions are no more than overt kludges.

In Nature, integration of atmospheric effects along the path of a ray proceeding into

space is limited by both the finite thickness of the atmosphere and the atmosphere's

curvature around the earth.  As in real life, we want the atmosphere to wrap around the

sphere of the planet, to limit optical path lengths through the atmosphere without

imposing some arbitrary limit to the length of "stray" rays which intersect nothing.  A

geometrically-correct atmosphere model will not only automatically limit the integration

of atmospheric effects, it will additionally grant the possibility of accurately rendering

planetary models from arbitrary points of view -- a useful capability for animations.  (In

fact, our entire foray into planetary models was motivated by the need for a "global"

context for fly-bys of existing synthetic landscape models. [91,106,108])  Furthermore,

such a function could be used to model a more realistic distribution of aerosols for a

physical model of atmospheric scattering such as Klassen's. [64]
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To realize this radial atmosphere we need to integrate, along an arbitrary line

segment, a function that falls off exponentially by distance from a given point in space.

We now describe such a function and the derivation of its integral.

4.1.6.2.  Density Profile of Atmosphere by Radius

Consider an ideal gas-planet: a gravitationally-bound collection of gas of

homogeneous composition and temperature, without internal structure or motion, in an

equilibrium state where gravitational collapse is countered solely by internal pressure of

the gas.  The density γ  of such an object might vary something like

γ r( ) = e−r 2

, (4.1.8)

that is, as an exponential function of radius r  from the center of the planet.  Figure 4.1.1

illustrates the graph of this function.

Figure 4.1.1: Graph of the function density = γ r( ) = e−r 2

Note that the slope is zero at r = 0 ; this is because the net gravitational force goes to

zero at the center of the planet, as the gravitational attraction of all the mass in the object

is exactly balanced at that point in space.
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4.1.6.3.  Density Profile Along an Arbitrary Line

Consider an arbitrary line l , in relation to the center of the planet   
v
c .  The line and the

point determine a plane, thus the analysis of density profile may proceed in two

dimensions, which simplifies our problem (see Figure 4.1.2).

Figure 4.1.2: Geometric construction of the atmospheric function.

The density profile along this line will be similar to that in Figure 4.1.1: The density

will increase up to the point of closest approach (  
v
p), i.e., the intersection of the line with

its perpendicular through the planet center.  At that point, the rate of change of density

will be zero, as in Figure 4.1.1.  The exact value of the density at  
v
p  is γ = (rp ), where rp

is the distance from  
v
p  to   

v
c :

  rp =
v
p −

v
v = (

v
p −

v
v) ⋅ (

v
p −

v
v) (4.1.9)

The density will fall off exponentially with distance from   
v
p  along the line l ; density

along l  will properly vary as:
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  Γ l
= γ (

v
t −

v
c ) (4.1.10)

for  
v
t ∈l .

For our purposes, we will approximate the density distribution Γ
l
 along l  with the

function «Γ
l
, defined as:

  

«Γ
l

v
t( ) =

γ rp( )γ v
t −

v
p( )

γ 0( )
=
γ rp( )γ r( )
γ 0( )

(4.1.11)

That is, we use the density distribution shown in Figure 4.1.1 (i.e., that of a line through

the center of the planet) scaled by the normalized value at   
v
p .

4.1.6.4.  The Integrating the Atmosphere Function

What we require is the integral of the function «Γ
l
.  Unfortunately, there exists no

closed-form solution to the integral of the exponential function in equation (4.1.8).  The C

and FORTRAN math libraries do, however, contain implementations of the so-called

"error function" which supplies a numerical approximation to the semi-definite integral of

the function e− t 2

:

erf(x) ≅
2
π

e− t 2

dt
0

x

∫ . (4.1.12)

We can then approximate the definite integral

  

τ = «Γ
l

v
t1

v
t2

∫ ≅ e−r p
2

erf
v
t2 −

v
c( ) − erf

v
t1 −

v
c( )[ ] (4.1.13)

to get the average value of the extinction coefficient ε  along an arbitrary optical path (the

optical path always being a finite line segment).  The transparency σ is again given by

equation (4.1.1).
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There is a numerical problem with this model which indicates the use of the math

library function erfc() rather than the function erf(), erfc() being defined to be

1.0 −  erf().  This is because of the difference between two calls to erf() taken in the

right hand side of equation (4.1.13).  For large values of 
  

v
t −

v
c , this difference may lead

to catastrophic cancellation. [52]  Problems with catastrophic cancellation have been

observed in practice, when the atmosphere has been scaled down to be very thin, as is the

Earth's atmosphere.  In this situation, numerical underflow occurs around the area where

we are looking straight down on the planet (e.g., in a circle concentric with the projected

disk of the planet on the screen).  The net effect is the creation of a sharp-edged "ozone

hole" where the atmosphere simply (and discontinuously) disappears in an circle around

the center of the planet.  While the use of erfc() does not completely prevent this

event, it does allow the atmosphere to be made thinner than when using erf(), before

the "ozone hole" appears.

4.1.6.5.  Atmospheric umbra

The radial fog model presented above is isotropic, from the point atmospheric origin

 
v
c .  Thus when used in a quarter-lit rendering, the atmosphere has the same lightness

above the night side of the planet as above the daylight.  This effect is worse, in practice,

than it might at first seem: the perceptual effect of light/dark contrast creates the net

effect of an atmosphere that appears lighter on the night side of the planet than on the

daylight side.  (Note that in Plate 4.5 the atmosphere appears a bit lighter near the poles

than at the equator on the sunlit side -- this is the same effect in action.)

What we need, then, is a simulation of the planet's shadow in its own atmosphere: a

"planetary umbra" or shadow in the atmosphere.  Fortunately, this is easily simulated by

fitting a cylinder of about the same radius as the planet, to the planet at the terminator (the

line of transition from day to night on the planet surface; i.e., where the sunlight is

exactly tangent to the planet's spherical surface).  Assuming a light source at infinity, the
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terminator is a great circle on the planetary sphere, lying in the plane passing through the

center of the planet and perpendicular to the direction to the light source.

The umbra cylinder is placed where that the shadow of the planet would propagate,

i.e., to the dark side of the planet.  The cylinder is then assigned a special 'texture' or

surface attribute which simply toggles the radial atmosphere function to a different set of

color and density parameters, which are appropriate to a nighttime atmosphere.  The net

effect is illustrated in Plate 4.5.  While this model ignores the penumbra of an extended

light source, it is simple, inexpensive, and an acceptable first approximation.  Jittering the

placement of the cylinder with the multiple samples of a simulated area light source could

be used to get a Monte Carlo approximation of a penumbra, as simple extension to the

repertoire of "distributed" ray tracing. [25]

Note that the cylinder radius should be that of the planet plus a small epsilon.  This is

because of the standard epsilon offset applied to refracted rays to prevent floating point

imprecision from causing immediate reintersection with the object from which they are

departing.  If the umbra cylinder and the planet sphere are closer together than this

epsilon, refracted rays can miss the planet surface and proceed inside of the planet.  This

generally leads to the appearance of a light-colored line along the terminator, which is

quite undesirable.  Close inspection of Plate 4.5 reveals this artifact in practice; note that

adaptive antialiasing has not caused it to disappear.

Another solution to the umbra problem is illustrated in Plate 4.6.  What we have done

here is to "shade" the atmosphere itself with a Lambertian reflection model.  That is,

we've made the atmosphere darken as a function of the cosine of the angle its "normal"

(i.e., the vector from   
v
c  to   

v
p  for a given ray) makes with the light direction.  We will

expand upon this at the end of the next section.
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4.1.7  A Model of Rayleigh Scattering

There are two main types of atmospheric scattering: Rayleigh and Mie scattering.

Mie scattering is frequency-independent, highly directional scattering by aerosol particles

much bigger than the wavelength of visible light. [85]  Rayleigh scattering is frequency-

dependent scattering of light by aerosol particles of size smaller than or roughly equal to,

the wavelengths of visible light.

The mathematical formulation of the Mie scattering model may intractably complex

for procedural image synthesis purposes [65], but this is of little consequence as

directional scattering of white light can be adequately modelled with a simple

implementation of the phase function; Blinn [12] presented a generalized phase function

suitable for simulating Mie scattering.

The empirical scattering model developed by Lord Rayleigh in the nineteenth century

indicates that scattering is proportional to the fourth power of the frequency. [148]  That

is to say, blue light is scattered more efficiently that green and red light; this is the cause

of the blue color of the sky.  Let us return to equation (4.1.2), which calculates

illumination sample I  as a function of the value calculated by the surface shader at the

end point of the ray, Is, and the contribution of the atmosphere along the ray path:

I = σIs + 1− σ( )Ia (4.1.2)

and recall that we said that Ia  is simply an rgb or frequency vector-valued color for the

fog.  Equation (4.1.1) indicated that the transparency σ  of the fog is an exponential

function of the optical depth τ = εδ :

σ ε,δ( ) = e−εδ = e−τ (4.1.1)

There was an unstated assumption that σ  was invariant for each of the colors in the

vector Ia .  Note that the calculation in equation (4.1.2) must be performed separately for
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each color component of the color vectors Iaand Is, that is, at least once for each of r, g

and b.  But we can make the extinction coefficient ε  a vector-valued quantity   
v
ε , i.e., we

can have different extinction coefficients for different colors.  Then we still integrate to

the given fog color Ia  at the limit, but with differing rates of replacement for red, green

and blue.  Particularly, by increasing the extinction coefficient for the blue component,

we can get a nice ad-hoc approximation to Rayleigh scattering, modulo the phase

function (which describes non-isotropic scattering as a function of angle to the lighting

direction).

Figure 4.1.3: Differing extinction coefficients for r, g, and b in Rayleigh approximation.

Plate 4.3 shows the scattering model applied in a planetary atmosphere.  Note that the

atmosphere appears blue at the edges and pale at the horizon due to scattering, and

yellows the (intrinsically white) snow caps by extinction.  The scattering/extinction color

dichotomy of the scattering model is best seen in the vicinity of the earth/moon

intersection (Plate 4.4): note how the atmosphere gracefully transitions from blue (due to

Rayleigh scattering) against the black background of space, to yellow-orange (due to

extinction) against the pale backdrop of the moon.  In this image the underlying color of

the fog is a smoggy orange-yellow, to provide the visual impression of Rayleigh

extinction, and we use an rgb extinction coefficient vector with component ratios of
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approximately  
v
ε ∝ (1:3:20) which would be appropriate for fourth powers of red, green

and blue primaries with (the rather exaggerated) wavelengths of 800, 500 and 380

nanometers, respectively.  Note that we have not used separate values of   
r
ε  for scattering

and extinction; the effect is achieved with one atmosphere color (orange-yellow) and a

single  
r
ε  tuned to emulate Rayleigh scattering.

We have found this atmospheric scattering approximation useful in most of our more

down-to-earth landscape renderings, as they generally include atmospheric haze to

provide depth cueing and realism - again, note the bluish cast on the distant peaks in

Plates 4.1 and 4.2.  The added cost of the scattering approximation is only two additional

calls to the exp() function, and it adds significantly to the overall realism of the image.

Plate 4.6 shows yet another enhancement to the scattering model.  What we have

done here is to vary Ia  and  
v
ε  with orientation to the light source - a sort of Lambertian

shading applied to the scattering parameters - to get a better approximation to the changes

in color of the atmosphere by distance-travelled-through-the-atmosphere of the sunlight.

Thus the atmosphere color Ia  is a pale grey near the "high noon" areas, fading to red near

the terminator.  The extinction coefficient   
v
ε  rolls off the high value for blue near the

terminator, to avoid darkening the backdrop by filtering with an atmosphere color Ia

which is deficient in blue.

Note that the umbra construct seen in Plate 4.5 is neither needed nor used in Plate 4.6,

as the atmospheric density goes to zero on the night side of the planet.  Inclusion of a

phase function, to improve the Rayleigh scattering approximation and/or to provide a Mie

scattering approximation, is similarly simple.

4.1.8  Conclusions

We have shown that the general behaviors of Nature which are responsible for the

effects causing atmospheric perspective may be emulated with a few relatively simple
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and efficient models.  The geometric models of aerosol density distributions may be used

in more accurate physical models of scattering.  A truly accurate model of scattering

should solve for the equilibrium state of radiative energy transfer, as in radiosity models.

Such a solution might be had in less-than-geologic computation time by using a

volumetric version of the Greengard-Rokhlin algorithm [42], as described for surfaces by

Hanrahan et al. [46]  Short of such an ambitious solution, the models presented here

suffice for the purposes of visual realism.

The models presented here may also be used for other purposes.  In Plate 4.7 we see

the radial fog employed in the service of visualization.  The DLA (diffusion-limited

aggregation) depicted here is a very complex object.  In an ordinary rendering, where the

3-D object is simply projected onto a 2-D image plane, the resulting image has a visual

complexity which renders it rather indecipherable: it is hard to tell what is in front, and

what is behind.  The radial fog centered on the DLA helps to disambiguate foreground

from background, and serves (perhaps perversely) as the only illumination in this

rendering-with-no-light-source.  In Plate 4.8 we see the same atmospheric model used

artistically.  In this case, we have found a use other than emulating Rayleigh scattering

for the independent extinction coefficients for red, green, and blue: by carefully assigning

the values of the fog color and these coefficients, we have obtained a visual

approximation of a range of black body temperatures, as if the cloud of gas were glowing

white-hot at the center and cooling to a cherry red towards the edges.  It is to be hoped

that these models can find other such creative uses.
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4.2  A Physical Model of Refraction and the Rainbow

In this section we present our models of dispersion and rainbows.  The dispersion

model was developed for, and presented in, the author's Masters thesis. [101]  It was

subsequently employed in the development of the physical model of the rainbow

presented here. [98]  To properly motivate that result, the dispersion model is described

below.

4.2.1  Introduction

Treatment of refraction in computer graphics generally lacks dispersion, or the

spreading of refracted light into its component colors or spectrum.  While convincing

simulations of transparent objects can be had without taking dispersion into account, the

inclusion of dispersion makes available additional realism and beauty.  We will present a

dispersion model, within the ray tracing paradigm, and develop a physical model of the

rainbow based on that dispersion model.

Modelling of dispersion entails the solution of at least two distinct problems: the

sampling and reconstruction of the power spectrum of light by frequency, and the display

of the spectrum of monochromatic colors on a standard graphics display device.  The first

problem may be treated as another aspect of the distributed ray tracing model of Cook et

al [25] or as an enhancement to Kajiya's rendering equation. [56]  The problem of

reproducing monochromatic colors is in the realm of color science [44,163] and an

approximate solution can be had through the use of metamers, though this problem

remains an open area of research.

Perhaps the most striking example of dispersion at work in Nature is the rainbow.

The arc of the rainbow is a result of the geometry of the reflection and refraction of light

in raindrops; the wonderful colors of the rainbow are the result of dispersion of sunlight

in refraction through water.  With a working dispersion model and some geometric
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optics, we can produce an efficient rainbow model for use in ray traced and Z-buffered

rendering schemes.  We will present two rainbow models, one empirical or

impressionistic [32] and another purely physical and thereby quite true to Nature.

4.2.2  Problem Statement

The Cook-Torrance [26] shading model takes into account the frequency of light

waves in reflection from surfaces, as a function of the index of refraction.  What has been

missing from the generally available literature is a model of refraction which takes into

account the frequency of light.  Such a dispersion model has been called for in previous

research. [56,71]  Some dispersion models have apparently been developed, but not

published. [33,159]  Thomas [150] published a brief description of a dispersion model,

but did not develop atmospheric rainbows; unfortunately, Thomas' article remains

obscure.  The work presented here was developed independently of Thomas, and differs

in most important respects.

The model of dispersion developed here is an extension of distributed ray tracing

[158] and thereby uses the Monte Carlo integration techniques of Cook. [23]  Integration

of a continuous function by a finite number of point samples can lead to two types of

aliasing, that of the frequency content of the signal being sampled and that introduced in

the reconstruction of the signal from the samples.  It is important to note that we are not

concerned with the former type of aliasing, which is the result of sampling the signal at a

rate below the Nyquist limit.  Color metamerism generally obviates the need for very

accurate reproduction of the exact curve of the power spectrum; nuances of the power

distribution are important only in the interaction of light with attenuating media and

reflecting surfaces and can safely be ignored in our model.

What is important is our reconstruction of the spectrum from the point samples taken.

As our approximation of the integral of the power spectrum will be a set of discrete
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samples, our reconstruction will be prone to appearing as a set of discrete, overlapping

colors.  This situation is analogous to that of temporal aliasing, where a moving ball may

be sampled (imaged) at several points in time in an attempt to get motion blur and, upon

reconstruction, appear as several overlapping, translucent circles.  In the case of

dispersion, if we were to render a white disk on a black background through a prism, we

might see several overlapping disks of different colors.  We call this effect spectral

aliasing, and use the jittering technique of stochastic sampling, or Monte Carlo

integration, to defeat it.  Jittering is random placement of the actual sample points within

fixed sample intervals, which intervals may themselves be regularly spaced.  Jittering

adds noise to the image and turns the distinct overlapping images into a speckled blur,

which looks a bit like spray paint.

The advantage of this noisy reconstruction of the image is that the human visual

system tends to blur the noise together into a smooth continuum, whereas it actually

enhances the sharp edges in the non-noisy images for a most displeasing effect.  Such

sharp discontinuities in intensity or color, or the rate of change thereof, manifest the

phenomenon known as Mach banding.  Mach bands are an artifact of the edge-

enhancement caused by lateral inhibition in the retina. [27]  When constructing and

sampling our representation of the spectrum we must be aware of the potential for trouble

with color Mach banding.  The practical significance of this problem will be addressed in

section 4.2.4.1.

Whatever colors we choose for representation, we will fail to accurately reproduce the

spectrum of monochromatic colors of light.  The graphics monitor has three primary

colors with which to work, none of which is fully saturated.  Even if we have three fully

saturated or monochromatic primaries (as are available with laser raster projection

systems), all other monochromatic colors can only be approximated, with varying degrees

of desaturation.  Our task, then, is to represent the entire visible spectrum of
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monochromatic colors as best we can, using three desaturated primaries and avoiding

Mach bands.  Furthermore, the sum of the samples chosen to represent the spectrum

must, at full intensity, be the value of full-intensity white.  If not, image samples

involving dispersion will be tinted and/or shifted in intensity.

Given a working model of dispersion and an acceptable representation of the

spectrum, one looks for applications.  One striking application is a physical model of the

rainbow.  Rainbows are the result of the interaction of sunlight with very large numbers

of raindrops in the atmosphere.  The sheer number of particles (raindrops) involved,

multiplied by the number of samples required to integrate the spectrum, makes a direct

simulation of nature quite impractical.  By modelling of the interaction of light with a

single ideal raindrop, we can acquire a table of data which represents the situation in

nature.  This table may be used subsequently in the rendering process to replicate the

effects of a rainbow in nature, with very good computational efficiency.  We will describe

such an approach in Section 4.2.3.

4.2.3  Previous Work

4.2.3.1.  Physics of Refraction

Refraction is an effect of the differing speed of light in dissimilar materials.  The

speed of light in a material determines its optical density which, surprisingly, is not

exactly proportional to its mass density.  As light slows down upon entering a medium of

greater optical density, the wave trains are compressed.  Thus, while frequency is

preserved, wavelength is not.  It thereby behooves one to be careful not to use

"frequency" and "wavelength" interchangeably when discussing refraction and

dispersion.

The angle of refraction, or the angle of the change in path for light, was related

mathematically to the net change in index of refraction by Willebrord Snell in 1621 (and,
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independently, by René Descartes at nearly the same time).  It is codified in Snell's Law

[9,125]:

η1 sinθi = η2 sinθt (4.2.1)

where η1 and η2  are the indices of refraction of the two transmissive media, θi  is the

angle of incidence and θt  is the angle of transmission.  As the refractive index η  is a

function of the frequency of the light ray, the angle of refraction is also a function of

frequency.  Thus arises dispersion.

4.2.3.2.  Physics of Dispersion

The proportion of change of index of refraction with frequency in a material is termed

dispersive power.  The dispersive power w  of a material is defined as the ratio of the

dispersion between the F and C Fraunhofer lines* to the mean deviation, i.e., the

deviation for the D Fraunhofer line. [139,143,161]  Thus

w =
ηF − ηC

ηD −1
(4.2.2)

where ηF , ηC , and ηD  are the refractive indices of the material at the frequencies of the

F, C, and D Fraunhofer lines, respectively.  In the optical industry, the reciprocal of the

dispersive power ν  (the "ν -value" or "Abbe number") is more commonly used [9]:

ν =
1
w
=

ηD −1
ηF − ηC

(4.2.3)

The Abbe number can range from about 16, for methylene iodide, to over 95, for calcium

fluoride.  (The respective dispersive powers are approximately 0.06 to 0.01.)  For optical

* The Fraunhofer lines are emission lines of hydrogen.  They represent monochromatic light at various
visible wavelengths: the C line is at 656.3 nm (red), D is at 589.3 nm (yellow), and F is at 486.1 nm
(violet).
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glasses the Abbe number can range from 19.7, for the densest silicate flint glass, to 70.0,

for light phosphate crown glass.  The Abbe number for water is 55.7.

Just as optical density is independent of mass density, dispersive power is

independent of optical density.  The reason is that dispersion is modulated by absorption

bands in materials, not by optical density.

Figure 4.2.1  The dispersion curve at an absorption band.

Note also that the plot of refractive index vs. frequency is not perfectly straight, but

curved.  This is an important factor in the development of a model of dispersion.

There have been many attempts to formulate a quantitative relation of refractive index

η  to frequency or wavelength λ , none entirely successful.  The best known and most

general is that of Sellmeier [9]:

η2 = 1+
bλ2

c2 − λ2∑ (4.2.3)

where b  is a constant characteristic of the material, c  is an idealized absorption

wavelength of the material (corresponding to a spectral absorption band) where the index

of refraction is infinite, and the summation is over all absorption bands in the material.

Simpler equations which are suitable for limited extents within the spectrum are [9]:

η =
a

λ0 +
b

λ2 +
c

λ4 + . . . (Cauchy)
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η = 1+
b

c − λ
(Hartmann)

η = a +
b

λ
+

c

λ
7

2

(Conrady)

η = a + bλ2 + cL + dL2 (Hertzberger)

where L = λ2 − 0.028( )−1
, and a , b , c , and d  are constants.  These equations are all

nonlinear, and values of the constants for various materials are not easily found in the

literature.  This will be a consideration in our development of a dispersion model.

4.2.3.3.  Rainbows

René Descartes worked out the first physically accurate model of the rainbow in

1637. [43,88]  To do this, he assumed the raindrops to be spherical and traced rays

through a circular, two dimensional representation - proof that ray tracing is hardly a new

technique.  Descartes' simulation is illustrated in Figure 4.2.2.
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Figure 4.2.2  Descartes' raindrop.

With his simulation, Descartes was able to accurately explain the angular size and

position of the primary rainbow arc and some of the supernumerary arcs.  (The

supernumerary arcs which sometimes appear immediately inside of the primary rainbow

arc are due to diffraction effects arising from the wave nature of light, and thus cannot be

modelled using the geometric optics of a particle transport ray tracing paradigm.  For

more on this topic, see Nussenzveig. [112] )  Interestingly, an explanation for the color in

the rainbow had to await Newton's discovery of dispersion some decades later.  Aside

from the supernumerary arcs inside the primary rainbow arc, Descartes' raindrop remains

an accurate and sufficient model of the rainbow.

To recreate Descartes' simulation, we trace rays into the raindrop from the optical axis

(ray 1 in Figure 4.2.2) to the edge of the circle.  This corresponds to a range of zero to

one for the impact parameter; the value of this impact parameter uniquely determines the

path of the ray through the raindrop.  Upon impinging the raindrop, the ray is refracted,
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reflected once for the primary arc or twice for the secondary arc, and refracted again upon

exiting the drop.  Arcs formed by higher-order internal reflections are deemed

unimportant as they are too dim and/or appear close to the sun in the sky, and are

therefore not visible in Nature.

Note that all rays with an impact parameter greater than or less than that of ray 7 in

Figure 4.2.2, the Descartes ray, emerge at an angle closer to the optical axis than that ray.

Thus the Descartes ray marks a point where the rate of change of emergence angle with

impact parameter is zero, and there is a concentration of light energy being returned at

this angle, which is approximately 42 degrees.  This gives us a bright feature 42 degrees

from the optical axis; it is dispersion which spreads the bright feature into the spectrum of

colors.  Note also that the fact that all rays which are reflected exactly once inside the

raindrop emerge at 42 degrees or less, makes the sky appear lighter inside of the primary

arc of the rainbow.  Rays reflected exactly twice inside the raindrop emerge with a peak

power at approximately 52 degrees, with the excess light emerging at greater angles.

Thus the secondary arc appears at about 52 degrees; between the two arcs is a zone of

darkness known as Alexander's band.  Alexander's band occurs naturally in our

simulation: see Plates 2.5, 4.12, and 4.13.

To perform an accurate simulation of energy transfer in Descartes' raindrop, the

Fresnel equation should be used to modulate the quantities of reflected and refracted

energy.  With an extinction coefficient* of 0, the Fresnel equation for reflection can be

written [14]:

* The extinction coefficient is a physical quantity specific to each material [144]  which varies with
frequency.  The specific values of this coefficient are often unknown for a given material, and it is
generally set to 0, for the purposes of computer graphics lighting models.
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r|| =
η2 cosθi − η1 cosθt

η2 cosθi + η1 cosθt

r⊥ =
η1 cosθi − η2 cosθt

η1 cosθi + η2 cosθt

R =
r||

2 + r⊥
2

2

(4.2.5)

(4.2.6)

(4.2.7)

where r||  is the reflection coefficient for the component of light which is polarized

parallel to the surface, r⊥  is the reflection coefficient for the component polarized

perpendicular to the surface, η1 and η2  are the refractive indices of the two materials, θi

is the angle of incidence, θt  is the angle of refraction, and R  is the total reflectivity.

Light not reflected is refracted in quantity 1− R.

Figure 4.2.3  The cone of a rainbow.

The rainbow phenomenon exists as a cone in space which is unique for each point of

view (and indeed for each eye of the individual observer); Figure 4.2.3 is intended to

illuminate this.  Inspect it carefully for the following argument.  Since the geometry of

reflection and refraction as discussed above gives us a spectrum appearing at an angle the

same as that of the Descartes ray from the straight back direction to the light source, we

would expect to see that spectrum in all (sunlit) raindrops viewed from that angle.  The

sun's rays can be assumed to be parallel, thus this effect appears to the observer as a circle

of angular radius 42 degrees, since the observer is, by definition, at the apex of the cone.
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Naturally occurring rainbows actually constitute a cone of half-angle 42 degrees around

the antisolar point and have an angular width of approximately 2 degrees.  The secondary

arc appears at a half-angle of 52 degrees.  Plate 4.11 demonstrates that, in the absence of

a landscape which clips the bottom half (at least) of the rainbow, it appears as concentric

circles around the antisolar ray.

4.2.3.4.  Computer Graphics

As mentioned above, the Cook-Torrance shading model relates reflection to index of

refraction and frequency through the Fresnel equation. [144]  A model of refraction

relating index of refraction to frequency has been developed by Thomas [150] and more

recently by the author [101,102]; that work is extended here to include a physical model

of the rainbow. [98]  The problem of integration and reconstruction using point samples

has been addressed by Cook [23] in his discussion of the distributed ray tracing model.

[25] The dispersion model developed by the author is a straightforward application of

Cook's techniques, as an extension to the repertoire of effects available through

distributed ray tracing.  A model of atmospheric rainbows has been alluded to in the

literature [22] and demonstrated in an image [24], but was not described.  It was not,

however, derived through a physical simulation. [21]  A physical model of the rainbow

requires a fair amount of development work.  Fortunately, the simulation need only be

run once; the results may then be included a rendering program or programs for all future

imaging applications.

4.2.4  Solution

We now describe our solutions to the problems of modelling dispersion and the

rainbow.
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4.2.4.1.  Sampling in the Frequency Domain of Light

To model dispersion, we must integrate the power spectrum of light at each sample

point in the image where there occurs dispersive refraction, such as on the surface of a

glass prism.  The integral of the power spectrum can be expressed:

IT = I λ( )
380

800

∫ dλ (4.2.8)

where IT  is the total illuminance at the given point in space and I λ( ) is the illuminance

at wavelength λ  at that point.  As we need only integrate the power spectrum of

transmitted light at dispersive surfaces, since only transmitted or refracted light is

dispersed, the integral we are interested in can be stated

IT = T λ( )
380

800

∫ dλ (4.2.9)

where It  is now the illuminance by transmitted light at a point in space on the boundary

of a change in refractive index, and T λ( )  is the illuminance by the transmitted light at

wavelength λ .

As previously stated, we will approximate this integral using a set of point samples.

We perform stochastic antialiasing of our integral by jittering [23] the samples.  If a

sample f  at frequency λ  represents the power in the spectrum over an interval of width

∆f , the jittering consists of adding a random offset ∆f X − 0.5( )  where X  is a random

variable of uniform distribution in the range 0,1[ ].  The net effect is to randomly place the

sample f  somewhere within the interval λ−
∆f

2
, λ+

∆f

2





.The fact that we take point

samples in the frequency continuum of light implies that we are also taking point samples

of the continuum of the dispersion curve, as index of refraction is a function of frequency.

Thus we face the choice of whether to jitter the frequency (and therefore the color) of the

rays or the refractive index of the material, or both.  Given that the jittered sample at
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frequency f  needs to be translated into R f( ), the value of the refractive index function

R  at f , we will prefer to jitter a linear function R  over a nonlinear function for reasons

of computational efficiency, as linear interpolation is in general quicker to evaluate than

nonlinear interpolation.

This may motivate us to contrive piecewise linear approximations to the spectrum and

the dispersion curve.  It is unlikely that the viewer of the final image will be able to

discriminate between a physically accurate nonlinear model and a computationally

efficient linear approximation; furthermore, since the dispersion curve is specific to a

given material, to be true to nature one would need to tabulate data for every distinct

material to be rendered.  We therefore employ a linear approximation to the dispersion

curve for our rendering dispersion model.

The refractive index and dispersive power for surfaces can be input parameters.  Thus

one can specify a polygon with an associated refractive index of, for example, 4.2 and a

dispersive power of perhaps 0.5, both of which are outlandish in terms of the "real"

world, but viable within our model.  It is interesting to create situations and materials

which cannot exist in our everyday experience; this is part of the power of computer

graphics.

The issue of which quantity to jitter, refractive index or color, or both, should be

evaluated in the light of computational efficiency.  The reason for jittering samples is to

avoid spectral aliasing, however, it has been our experience that spectral aliasing is not a

significant problem in any but deliberately pathological scenes.  That is, the distinct

overlapping images of different colors are simply not readily visible unless the dispersive

power is unrealistically high.  When jittering is deemed desirable, we jitter the frequency

of the ray and derive, in a pre-rendering operation, a constant cs  for each refractive

surface s  in the scene:
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cs =
w η −1( ) − η

0.76
(4.2.9)

where w  is the dispersive power, η  is the refractive index at the far red end of the

spectrum, 0.76 is the proportion of the visible spectrum that lies between the C and F

Fraunhofer lines.  This constant cs , when multiplied by the frequency of a sample, gives

the refractive index at that frequency for use in calculations of propagation of refracted

light.  (Note that this assumes that frequency is specified in the range 0,1[ ].)  Thus the

cost of jittering is reduced to one floating point multiplication per surface encountered,

plus the negligible preprocessing cost of evaluating cs  for each relevant object in the

scene and the cost of interpolating the color of the final sample.

4.2.4.2.  Representing the Spectrum

To reproduce the spectrum, we must simulate the entire gamut of monochromatic

colors using only the three desaturated primaries of the graphics monitor.  Furthermore,

the integral of each of the red, green, and blue curves of our simulated spectrum must be

unity, or the reconstruction of an image from our samples will be tinted, darkened, or

overdriven.  We refer to this as the summing to white criterion.  As we work within the

rgb color space, we should restate equation (9) in terms of the rgb vectors:

ItR
= R λ( )

380

800

∫ T λ( ) dλ (4.2.11)

ItG
= G λ( )

380

800

∫ T λ( ) dλ (4.2.12)

ItB
= B λ( )

380

800

∫ T λ( ) dλ (4.2.13)

where R λ( ) , G λ( ) , and B λ( )  are the values of the R, G, and B tristimulus functions for

the metameric color used to represent the color of monochromatic light of wavelength λ .

[163]  When sampling at a particular frequency then, we are actually taking three (red,
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green, and blue) samples of T λ( ) .  The distribution of the samples should be tailored to

the shape of the tristimulus curves used in the representation of the spectrum, with care

taken to assure that:

R λ i( )
i=1

n

∑ = G λ i( )
i=1

n

∑ = B λ i( )
i=1

n

∑ (4.2.14)

where λ i  is the wavelength of the ith  sample, and R λ i( ) , G λ i( ) , and B λ i( ) are the red,

green, and blue values, respectively, of sample λ i .  This equality is necessary in order to

have the samples (at their maximum intensity values) sum to white in the rgb color space

of the graphics monitor.

4.2.4.2.1.  Linear Spectrum Model

Figure 4.2.4.  The rgb curves of the linear spectral representation.

A simple representation of the spectrum, given these constraints, is shown in Figure

4.2.4.  This model has the advantage of being piecewise linear, for fast interpolation of

color, and it provides a reasonably good perceptual representation of the spectrum.  It has

the disadvantage of using a significant portion of the power available to the red primary,
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in the approximation of violet with magenta.  Violet is of higher frequency than is

available with an rgb monitor and therefore cannot be directly reproduced; magenta is a

visually acceptable substitute.  A problem with the magenta representation of violet is

that edges which are blurred by dispersion such that they should appear with the color

sequence yellow-orange-red-black, actually appear greenish-yellow-red-black.  (See Plate

4.9.)  This is because in a white-to-black transition of this sort, the first color to be

subtracted out from the sum is violet.  When violet is represented as a sum of equal

quantities of red and blue, the subtraction of violet leaves a surplus of green.  This is a

subtle effect, and escapes the notice of most viewers.

Another potential drawback of this representation of the spectrum is the pronounced

discontinuities in the first derivative of the rgb curves.  While this has the potential for

causing color mach banding, such an effect has only been observed in deliberately

pathological scenes.  Yet another problem found is that the red band in the spectrum

appears too narrow, again because some of the red energy is used to display violet.  The

final problem is that the rolloff of red and violet to black is too steep and short; the entire

curve bears no resemblance to the response curve of the human visual system.

Despite the above drawbacks, we have found this to be a viable representation of the

visible spectrum.

We sample the representation of the spectrum at 13 intervals centered on the vertical

lines in Figure 4.2.4.  This provides a good basis for reconstruction of the spectrum and

preserves the summing to white property.  However, when jittering we encounter the

problem that the samples may longer sum to white.  The noise added by uncorrelated

jittering of the 13 samples will generally skew the sum; in practice this appears as a faint

colorful noise, faint enough to not be objectionable or even usually noticeable.  (This

problem could be defeated by correlating the jittering of the 13 samples to balance total

color content, but this is computationally expensive.)  Furthermore, about half the time
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Figure 4.2.5.  The rgb curves of the CIE spectral representation.

the sum of jittered samples of a full intensity white point will exceed unity.  If the sum is

not clamped to unity at the high end, overflow will occur and the color of the summed

samples is likely to wrap around to black.  This problem is defeated by clamping the sum,

at minimal computational cost.

4.2.4.2.2.  CIE Spectrum Model

A more rigorous approach to the construction of the representation of the spectrum

involves taking the xyz coordinates of the monochromatic spectral colors in the CIE XYZ

color space [163] and performing the appropriate linear transformation into rgb values.

Construction of the transformation matrix requires information about the chromaticity

coordinates of the specific monitor on which the spectrum is to be displayed. [125]  We

use as input the xyz coordinates of monochromatic colors weighted by the spectral

radiant power distribution of the CIE standard illuminant B, which is designed to emulate

direct sunlight (the light source for rainbows).  The following graphs are piecewise linear

between samples taken at 10 nm (nanometer) intervals from 380 to 770 nm. [163]
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Figure 4.2.6.  Summed rgb values, with and without negative values.

As our rgb primaries are not fully saturated, we expect that at all points in the

spectrum at least one of the rgb values will be negative.  This is indeed what we see in the

curves of Figure 4.2.5.  The sum of these curves, both with negative values included and

with negative values clamped to zero, are shown in Figure 4.2.6.  A more accurate

approximation to the spectrum, without negative values, could be attained be limiting the

xyz input values to the color gamut of the monitor.

Note that the curves in Figure 4.2.6 have a local minimum in the cyan area of the

spectrum.  These curves do not give an acceptable representation of the spectrum on a

monitor calibrated for perceptually linear contrast response; the cyan and yellow colors

appear far too dark.  When adjusted with a gamma correction of 2.5 to 3.0, the zero-

clamped curve gives a less objectionable representation of the spectrum, but one which is

still far from an accurate representation of what we see in Nature (and not nearly as

visually pleasing as the ad hoc model described above).  Note also that the area under the

zero clamped curves should be normalized to meet the summing to white requirement.

It would seem that the only "correct" solution to representing the spectrum, would be

to desaturate all of the monochromatic colors (by the same amount) until the horseshoe of

such colors on the CIE chromaticity diagram fits within the triangle defined by the



120

chromaticity coordinates of the rgb display device primaries. [125,163] This would lead

to a highly desaturated world in the resulting images, and for that reason this

theoretically-correct solution is rejected out of hand.

4.2.4.3.  Rainbow Models

4.2.4.3.1.  Empirical Rainbow Model

We have developed two models of the rainbow, one empirical* and relatively simple,

the other comparatively complex and purely physical.  The former model entails using

the 13 colors of our samples of the linear spectrum model to create 13 different colors of

fog which compose a rainbow.  The fog function is simply an asymptotic replacement of

some percentage r  of the color value computed at the end of the ray, with the color value

of the fog, based on the distance that the ray has traveled.  This is again given by Beer's

law [19] :

r = e−hd / t (4.2.14)

where h  is a constant, d  is the distance, and t  is the transmittance constant; note that

t  has red, green, and blue components, usually equal.  As that distance goes to infinity,

the percentage of replacement goes to 100.  The 13 colored fogs are invoked in concentric

rings (cones, actually) around the antisolar vector, e.g., the vector from the light source to

the eye point.  This vector corresponds to the ray from the observer to the antisolar point

in Figure 4.2.3.  Each ring is a band of some angular width, at some angular offset from

the antisolar vector.  We construct the rainbow by taking the dot product of each ray

traced, with the antisolar vector; this dot product gives us the cosine of the angle between

* Interestingly, Fournier contends [33] that this first model is an empirical model, as parameters such as
angular width and position are taken from measurements of the rainbow in Nature.  The author, in contrast,
maintains that "empirical" implies too strong a basis in such measurements, and that model is better
classified as impressionistic, i.e., based on a visual impression of Nature.  After all, those empirical
parameters may be changed arbitrarily by the user in our implementation.
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the two vectors.  This cosine is then used as an index into a table of the 13 colored fogs.

The indexing function can be parameterized to vary the width and angular placement of

the rainbow.  The following C code segment implements this parameterized rainbow:

index = ( DOT(ray_direction, antisolar_ray) - rainbow_angle)
  * rainbow_width;

if (jitter_option)
index += jitter(delta);

if ((index >= 0) && (index < FREQUENCIES))
Fog = Rainbow[(int)index];

else Fog = NULL;

where ray_direction and antisolar_ray are vectors, Fog and Rainbow[] are pointers to

structures for the fog type, and the other variables are floating point type.  The constant

FREQUENCIES is equal to 13; the function call jitter(delta) returns a random value of

uniform distribution in the range [-delta/2,delta/2].

The jitter option turns a rainbow composed of concentric bands of color to a more

attractive "fuzzy" rainbow.  This jittered rainbow can look fairly realistic, particularly

when supersampling is employed to soften the noise introduced by the jittering.  (See

Plate 4.9.)  Note that this scheme only jitters the index to the table of colored fogs, and

not the color of the fog itself; an improvement would be to add such color jittering.

4.2.4.3.2.  Physical Rainbow Model

The above approach is ad hoc and is not really based on a dispersion model, but only

uses the spectral representation of our dispersion scheme.  A more rigorous and complex

approach, yielding a more realistic result, is to recreate Descartes' simulation using

dispersion.  We will have to integrate Descartes' raindrop over the visible frequencies of

light; this entails ray tracing Descartes' raindrop at a variety of frequencies and summing

the results.  Clearly it is inefficient to ray trace Descartes' raindrop for every ray spawned

in the process of rendering a scene; fortunately we can do much better than this.  We need

only perform the integration over frequency of Descartes' raindrop once, in a
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preprocessing step, to build a table of fogs similar to that used in the our simpler rainbow

model.  This table will need to have a relatively large number of entries, as a real rainbow

is an illumination effect that covers most of the sky, though mostly to a very subtle

degree.  Thus we have entries for a large number of angular displacements, over a 180

degree range.  (In practice, no fog might be required in the 10 degree interval of

Alexander's band, as no light is returned there by refraction.)

The first step in implementation of the physical model is to generate an algorithm for

ray tracing Descartes' raindrop.  This means calculating the angle of emergence and

energy attenuation factor for rays which are reflected once and twice inside the raindrop,

as a function of the impact parameter.  The angle of emergence of a given ray is

determined by the geometric optics of reflection and refraction in a sphere, while the

energy transfer is determined by the physics of reflection and refraction of light as it

interacts with air/water boundaries.

The geometric optics of Descartes' raindrop are illustrated in Figure 4.2.7.
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Figure 4.2.7  The geometric optics of Descartes' raindrop.

Note that we can take advantage of the equality of angles θ1 and θ2 .  Once this geometry

is established, it is straightforward to program an algorithm to trace the required rays.

For the purposes of computer graphics, we are generally not concerned with the

polarization of light, and generalizations of the Fresnel equation for non-polarized light

are usually employed.  For this simulation, however, we are more interested in physical

veracity than computational efficiency, so we choose the formulation of the equation as it

appears in equations (4.2.5-7).  Note that the orientation of polarization to the surface is

preserved through reflections and refractions in a spherical raindrop.

Also in the interest of physical accuracy, we use a nonlinear approximation of the

dispersion curve of water in our rainbow simulation.  Using actual measurements of the

refractive index of water at various frequencies [60] we derive constants a  and b  of

Cauchy's equation for refractive index, getting a = 1.3239 and b = 3116.3.  The first two

elements of the Cauchy series:



124

η =
a

λ0 +
b

λ2 = a +
b

λ2 (4.2.16)

give a good approximation to the dispersion curve of water with the derived values of a

and b : over the wavelength range from 405 to 670 nanometers, the calculated values of

η  agree with measured values to within plus or minus 0.0001, or 0.8 of one percent.  We

use a refractive index of 1.0003 for air.

Our first implementation of the physical rainbow model uses samples taken at 13

fixed, evenly spaced frequencies or wavelengths.  (We relax our rigor in the use of

"frequency" and "wavelength" here, as the visible spectrum is usually specified by

wavelengths of light in a vacuum.)  We trace 50,000 rays per wavelength, over the range

of impact parameters.  For each wavelength sampled, the intensities of the emerging rays

are summed by angle of emergence in a linear array of 1800 buckets.  The intensities in

each bucket are then multiplied by the rgb vector of the representative color for that

wavelength and added to buckets of a similar array of rgb intensities by angle.  After all

wavelengths have been sampled, the results in the rgb array are normalized and inverted

for use in the fog function.  Unlike the ad hoc rainbow model, the fogs used are not

themselves colored, but rather their transmittances, t  in equation (4.2.15), are unequal in

red, green, and blue.  Thus the fogs have no intrinsic color, but red, green, and blue

values at ray endpoints are replaced at independent rates per unit distance, as in the

Rayleigh scattering model of section 4.1.7.  This prevents unnecessary filtering by

attenuation of colors behind the rainbow, and is appropriate because the rainbow, in

Nature, acts by adding color energy along the optical path, not by filtering it out.

Our first approach evidences significant spectral aliasing.  Spectral aliasing is

accentuated in the rainbow model, as the bright feature at the Descartes ray is quite

narrow and pronounced for a point light source, resulting in thin concentric rings of color

in the rainbow (see Plate 4.10).  The rings are more widely spaced and therefore more
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evident in the violet end of the spectrum, as the dispersion curve is steeper at shorter

wavelengths.

A second implementation employs spectral antialiasing.  Again we sample at 13

distinct frequency intervals, but we jitter the samples within the intervals.  This approach

requires that we multiply the intensity of the ray by the interpolated rgb value for its

specific frequency, and store that vector in the rgb array immediately, rather than using an

intermediate storage array, as the colors of individual rays will vary.  This has the effect

of blurring and merging the rings produced by discrete sampling.

Again, the process described above yields the rainbow produced by a point light

source, thus the rings of color produced by spectral aliasing are quite narrow and distinct

(Plate 4.10).  In nature rainbows are produced by the sun, which has an angular diameter

of approximately one half of one degree.  Convolution of the final rgb tables with a (one

dimensional) kernel which represents the disk of the sun spreads each of the rings over

one half a degree of angle.  The kernel we use is five entries wide, corresponding to the

fact that our fog samples are taken at 1 / 10th  degree intervals.  Since the entire angular

width of the rainbow is approximately two degrees, this blurs the rings together well

enough to provide very good spectral antialiasing.  See Plate 4.11; compare to Plate 4.10.

If the area under the curve of the semicircular kernel is normalized, there will be no net

change in the density of the fog tables after the convolution.

Plate 4.12 illustrates another feature of our rainbow models.  In nature, rainbows are

rarely perfect arcs, in fact one most often sees only a portion of the full rainbow arc.

Rainbows are modulated by three factors: the horizon, which clips the bottom portion of

the rainbow; the shadows through space of the clouds from which the rain originates; and

the spatial distribution of the falling rain itself.  In an effort to make our rainbows look

more natural, we modulate intensity of the rainbow with a procedural fBm texture (see

chapters 2 & 5).  This is a texture function which takes a vector as its argument and
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returns a stochastic scalar quantity with a 1/ f  power spectrum.  The vector we pass to the

texture is the ray direction; we use the scalar value returned to modulate the transmittance

of the rainbow fogs.  The frequency content of the fBm function can be parameterized for

varying effects (see chapters 2 and 5), and the texture can be scaled on a vertical or

slanted axis to simulate sheets of falling rain.

4.2.5  Conclusion

A model of dispersive refraction within the distributed ray tracing paradigm has been

implemented, with good subjective results.  The problem of representing the spectrum of

monochromatic colors within the rgb color space has been addressed, but not solved to

final satisfaction; further work is called for here.  Physical and empirical/impressionistic

models of the rainbow have been developed, using the above results.  In contrast to the

dispersion model, the rainbow models are relatively efficient to render, because of their

table-lookup implementation.  The rainbow models are suitable for Z-buffer rendering

schemes, as well as ray tracing.
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4.3  A Physical Model of the Mirage

4.3.1  Introduction

In the May, 1990, edition of IEEE Computer Graphics and Applications featured an

article "Ray tracing Mirages" by Marc Berger, Terry Trout, and Nancy Levit. [8]  It

contained a line-drawing figure, and an explanation of it, which we saw as essentially

misleading.  The misleading illustration was traced back to their reference sources. [30

,69]  Some other small inaccuracies in the article were noted as well.  In response, we

drafted a letter to the editor.  Never expecting the letter to be published, we were

astonished when we were asked for permission to use it as a short "research note" article

in the same journal. [95]

Having been unexpectedly called to go public with this comment, we felt compelled

to "put our money where our mouth is" and develop a mirage model of our own.  This

lead to the image seen in Plate 1.3, which was developed as a verification test for the

model.  (It remains, to date, the one and only image we have created using the mirage

model.)  The image has received wide recognition as an artwork in its own right, having

appeared on the cover of IEEE Computer Graphics and Applications [91], as a two-page

spread in the Communications of the ACM [63], in both the SIGGRAPH '91 Art Show

and the SIGGRAPH '91 Technical Slide Set, and in numerous international publications.

It is particularly interesting in that it may be the first example of a mirage appearing in a

fine art landscape rendering. [40]  As an artwork which was born as an illustration of an

original scientific model, it embodies all the best and most significant aspects of this

work.

4.3.2  A Comment on "Ray Tracing Mirages"

The article "Ray Tracing Mirages" [8] by Berger, Trout and Levit describes a certain

model for mirage formation.  This model is based on the existing physics literature
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[30,69]; we will refer to it as the Khular/Fabri model below.  We would like to make

some perhaps picayune points about Boyer et al's interpretation of this model and their

description of their implementation of a version of it.  These points have important

implications for the resulting images.

The Khular/Fabri model asserts that light rays may be caused to follow a parabolic

path by a continuous decrease in the index of refraction of air with altitude.  The change

in refractive index η  due to heating of air near the ground is modelled as an exponential

function of altitude.  In the words of Fabri:

A light ray forming angle ν  with the (vertical) axis undergoes a series of
infinitesimal refractions; η sin ν  being always constant...  Therefore when

η = ηA sin νA , it follows that sin ν = 1 and the ray cannot penetrate at lower

values of n ; it is a concave curve, pointing at both ends towards the positive
sense of the (vertical) axis.

What Fabri is pointing out is the phenomenon of total (internal) reflection in which

light rays which impinge upon a boundary of decrease in refractive index at an angle

greater than the so-called critical angle  are reflected with 100% efficiency.  The critical

angle is that where Snell's Law [9,125]

η1 sinθi = η2 sinθt (4.3.1)

requires the sine of one the angles to be equal to one; above this value the sine would be

required to be greater than one, thus no light is refracted, all is reflected. [161]

Unfortunately, Khular, Fabri and Berger et al all have nice illustrations of the resulting

ray path which indicate that path is a (continuously differentiable) paraboloid or

hyperboloid.  Here the mischief is made: while the path of the ray will be "a concave

curve, pointing at both ends towards the positive sense of the (vertical) axis", it will be a

curve that is not differentiable due to the discontinuity in the first derivative at the point

of total reflection. The continuous change in the refractive index of the transmissive

medium (the air) will indeed cause the path of the ray at either side of this point to follow
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a nonlinear curve.  The entire path of the ray cannot, however, be modelled as a

continuously-differentiable paraboloid curve; it is, in fact, a reflected hyperbolic curve.

While the authors appear to have correctly included total reflection in their model (see

point R in figure 5 on page 40 and the third sentence in the first paragraph on page 39),

they make the misleading statement on page 38:

As a ray enters the mirage box, it strikes the different air layers, bending at each
level and thereby approximating the parabolic ray equation.

Why is this seemingly minor point of any importance?  First, if the formation of a

mirage were by some continuous deformation in the ray path, one would expect to see a

different image than if it were formed by some discontinuous process such as total

reflection.  Second, if refraction were the primary engine in mirage formation, one would

expect to see the effects of dispersion in a mirage, smearing the image into its component

colors by a prismatic effect (an important factor in the generation of the famous and

elusive "green flash" of the setting sun).  This author's subjective experience indicates

little-to-no dispersion in mirages observed in nature.  Furthermore, as the index of

refraction of air at room temperature and pressure is approximately 1.00027, versus 1.0

for a vacuum, there is precious little refractive power to work with via density changes

caused by atmospheric heating.  By contrast, water has a refractive index of 1.33, glass

can range from 1.5 to 1.9.  This would indicate that the primary "bending agent" in

mirage formation is total reflection, not refraction, which in turn would indicate that a

purely reflective model, without refraction, might well be sufficient.  This would be a

very good thing, as dispersive ray tracing is not particularly easy or inexpensive to

implement. [98,150] It would also obviate the statement on page 38:

The use of layers allows a digitized approach to the continuous spectrum.

This obviation is also a good thing, as this author claims that the problem of

representing the spectrum with fully saturated (as opposed to partially desaturated) rbg

colors is an open problem in the field of computer graphics [98,101] thus calling into
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question schemes which involve taking a number of monochromatic, or tightly band-

limited, samples rather than just three samples in each of red, green and blue.  A series of

monochromatic samples may only be displayed in proper chromatic relation to one

another, by substantially desaturating them so that they are reproducible with the color

gamut of the display device. [147,163]  A highly color-desaturated world is a boring

place to render; thus we question the wisdom of frequency-sampling techniques, except

when exact simulation of the interaction of color of materials with specific, known

spectra is important.

4.3.3  Total Internal Reflection in Ray Tracing

A final note on the article "Ray Tracing Mirages": we hope that it will mark the

beginning of the end for a faulty assumption built into many ray tracers, since the very

inception of ray tracing as a rendering technique in computer graphics.  This assumption

is that all rays spawned by total internal reflection should immediately be squelched, their

contribution set to that of the background color.  This practice of squelching is

attributable to Whitted [158] who did this, and published it, in his seminal paper on ray

tracing.  While the author cannot claim access to the thought processes of Mr. Whitted at

the time, we can guess that he made the assumption that this squelching was a good idea

because: a) any ray spawned by total internal reflection inside of a sphere will propagate

inside that sphere forever by total reflection, b) ray tracing was already a very expensive

algorithm to execute on the hardware of the day, therefore excess and non-contributing

rays were best culled, and c) once having ray traced glass spheres, people might never

want to ray trace anything else, therefore one might as well optimize the algorithm for

spheres.

This author has reaped some unpleasant artifacts from Whitted's assumption - see

Plate 4.9 where the bottom of the (dispersively refracting) prism, which could be (totally)

reflecting something in the scene, is rendered in dark blue, the background color.  We
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therefore advocate the abolition of this banishment of totally reflected rays in ray tracing

programs.  If the potential performance cost it in ray tracing glass spheres is irksome, we

suggest  quashing totally reflected rays only when they originate inside of spheres.

4.4  Chapter Conclusion

Atmospheric effects are essential to the realistic rendering of terrain models.  The

complexity of photon propagation in such participating media is a much harder problem

than we dare attempt to solve, in the context of production image generation.  For such

purposes, we require efficient models which reflect the gross behavior of Nature fairly

well, in subjective visual assessment.  We have developed and demonstrated the visual

efficacy of, such models.

The atmospheric effect of chief importance is aerial perspective, as it is a critical

distance cue in landscape renderings.  Modelling aerial perspective requires geometric

models of the spatial distribution of scattering aerosols and a model of frequency-

dependent scattering and extinction.  We have demonstrated novel and effective models

of both.

Not so essential, but nevertheless of interest, are models of the rainbow and mirage.

We have shown models of these effects as well.  Variations on the rainbow model may be

used to simulate other effects, such as halos, glories, sun dogs, and other spectral

phenomena caused by transparent particles (such as ice crystals) suspended in the

atmosphere, in future research.

As most of our models are designed to be simple expedients to gain first

approximations to desired effects, it is not surprising that the area of modelling

atmospheric effects has much room for fruitful future research.  The true complexity of

the behavior of Nature in this area will no doubt elude our simulation capabilities, at least

in image synthesis, for some time to come.
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5.  Chapter 5:  Procedural Textures

5.1  Introduction

In this chapter will describe a very small part of our work in developing procedural

textures as models of natural phenomena.  As these functions are developed and

evaluated in an entirely subjective manner, there is relatively little of scientific or

technical depth here.  These functions are, however, critical to the visual success of our

images.  As one of the foremost practitioners in this area, the author has been called upon

to share his methodology [99,100 ,105] that others may profit from whatever insights

may be obtained from such an exposition.  The main point of interest, in the context of

this document, is the overall strategy of encapsulating complex visual behavior reflecting

that found in Nature, in comparatively terse functions or algorithms -- the process of

proceduralism.

5.1.1.  Proceduralism as Paradigm

Proceduralism is a powerful paradigm for image synthesis.  In a procedural approach,

rather than explicitly specifying and storing all the complex details of a scene or

sequence, we abstract them into a function or an algorithm (i.e., a procedure) and

evaluate that procedure when and where needed, i.e., via lazy evaluation.  We gain a

savings in storage space, as the details are no longer explicitly specified but rather are

implicit in the procedure, and we shift the time requirements for specification of details



133

from the programmer to the computer.  We also gain the power of parametric control with

its conceptual abstraction (e.g., a number which makes mountains "rougher" or

"smoother") and the serendipity inherent in an at-least-semiautonomous process: we are

often pleasantly surprised by unexpected behaviors, particularly in stochastic procedures.

Some aspects of image synthesis are perforce procedural, i.e., they can't practically be

evaluated in advance: view-dependent specular shading and atmospheric effects, for

example.  It is implausible, for example, to evaluate and store a realistic model of

atmospheric scattering in advance of rendering; rather, the atmospheric effects are more

readily evaluated along the interval between points of interest during the rendering

process.

In an essential sense, anything done with a computer can be thought of as being

"procedural", but we in computer graphics have a somewhat more specific idea of what

constitutes "proceduralism", though the term may defy exact definition.  It may (or may

not) be safe to say that when we computer graphicists think "procedural" we are usually

thinking of "modelling that is done at rendering-time", as opposed to being done in a

previous, separate modelling step.

The process of developing a procedural model embodies the basic loop of scientific

discovery [107,110]: A formal model is posited, observations and comparisons of the

model and Nature are made, the model is refined accordingly, and more observations are

made.  The process of observation and refinement proceeds in an iterative loop.

Hanrahan has observed [45] that a fundamental difference between the way this loop

proceeds in traditional sciences versus the development of a procedural model for

computer graphics, is the time required for a single iteration: for a traditional laboratory

scientist this period may be on the order of years or even a lifetime; when developing a

model for computer graphics it is typically more like minutes.
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5.1.2.  Proceduralism and Fractal Models

We noted in chapter 1 that fractals are inherently procedural, as they are specified by

recursive or iterative algorithms, and that computer graphics have always been required

to grasp the complexity of their behavior.  Thus it is not surprising that much of what is

visually complex in computer graphics, has fractal underpinnings.  There is simply no

known way of specifying complexity, more simply.

Our work has largely involved developing fractal models of natural phenomena for

computer graphics.  Being very taken with this concept of simple specification and

encoding of complexity, proceduralism has been our chosen modus operandi.  There are

powerful capabilities to be gained through this approach.

Fractals contain potentially unlimited high and low spatial frequency content.  The

former can play merry hell with the point sampling schemes of computer graphics, due to

the effects described by the Nyquist sampling theorem.  The high frequency content can,

and should, be parameterized in procedural fractal models.  We should be able to vary the

high frequency content with the screen resolution of the rendering, e.g., higher-resolution

images need more small details.  Optimally, we would also like to be able to vary the

frequency content adaptively in rendering, as the perspective projection makes feature

sizes on the screen vary as the inverse square of their distance from the eye.

Procedural approaches can readily accommodate these needs, simply by

parameterizing the number of iterations in the fractal construction loop, and assigning

that parameter appropriate values at the various locations in the scene.  As accomplishing

this represents work currently in progress, we will not describe it here, but refer the

interested reader to the literature. [117]
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5.1.3.  Procedural Solid Textures

Perhaps the best-known form of proceduralism in computer graphics is in procedural

textures, as introduced in 1985 by Gardner [39], Peachey [118], and Perlin. [119]  A

procedural, or "solid" texture, rather than existing a priori as a two-dimensional image

which must be mapped or "wallpapered" onto surfaces, is implemented as a function

defined throughout three-space and evaluated when and where needed, e.g., on visible

surfaces of objects.  Such functions can also be evaluated throughout a volume, as Perlin

has suggested in his "Hypertextures" paper [120], but this remains an exotic application --

in fact, these wonderful procedural textures are so computationally expensive that many

practitioners may hesitate to use them even on surfaces, in everyday production image

synthesis.

Currently it takes on the order of hours for several high performance workstations,

working in parallel, to create a single high resolution image using the (sometimes

particularly elaborate) procedural textures described below.  Inevitably (and hopefully

within five to ten years) we will have improved the efficiency of these procedures, and

have sufficient computational power at our disposal, to evaluate such models in real-time.

Then we will have the capability of interactively exploring the worlds we create, in a

virtual reality setting.

5.1.4.  Proceduralism and Parallel Computing

How do we currently overcome the high cost of evaluating these procedures?  In a

word, parallelism.  Perlin uses an AT&T Pixel Machine to evaluate his hypertextures

[120]; Sims has harnessed a Connection Machine 2 to evaluate his genetically-derived

texture expressions [137,138].  These are both SIMD (single-instruction, multiple-data)

implementations; the underlying architectures allowing access to massive, if inflexible,

parallel processing power.  Our work has been made possible by C-Linda [16], a minimal
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extension of the C programming language (by exactly six statements) which allows

transparent access to multiple processors in a MIMD (multiple-instruction, multiple-data)

parallel environment.  Our Linda strategies for parallel computation are described in

Appendix 1.

5.1.5.  Overview

Below is our exposition on procedural textures.  It consists largely of segments from

notes for courses we have participated in, on the topic. [100]Musgrave, ,#122; Musgrave,

,#127; Musgrave, ,#218  It is a relatively small segment thereof, because this area is more

at practice than research, and we feel that the basic flavor of such work can be conveyed

by a small number of examples.  It may be seen as a continuation of discussion of

procedural methods begun in chapter 2, the main difference being that now we are

interpreting the functions as surface textures, rather than as height fields.  The examples

we give come from our current efforts at planetary modelling, culminating in a model of

an Earth-like planet which incorporates many of the elements described in this

dissertation, upon the face of which we seek to situate our more local renderings.  This

model marks an important step towards the creation of a viable "virtual world", to be

explored with future interactive technologies.

5.2  Planetary-Scale Clouds

We have developed a reasonable procedural model of the coloring of the surface of

the Earth (presented in section 5.5) and an atmosphere in which to ensconce the planet

(section 4.1.6).  But the most salient visual features of the Earth, as seen from space, are

the bright white clouds, and the wonderful shapes they form in the global circulation of

the atmosphere.  We need, then, to develop a model of global cloud cover.  While the

model we present is inherently two-dimensional (though it could conceivably be

implemented in three dimensions as a hypertexture [120]) and has visually obvious
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shortcomings,* it is very simple and gives a reasonable first approximation to nature.  We

use it as a transparency map applied to a sphere concentric with, and of radius slightly

greater than, the earth.

We start with a special variety of fBm.  We have found that an fBm constructed using

the noise shown in Plate 2.7b as a basis function has a stringy, wispy character, somewhat

more cloud-like than fBm constructed using the conventional Perlin noise function --

compare Plate 2.7c and d.  We refer to this noise VLNoise(), for "variable lacunarity

noise".  It is constructed by composition of noise functions: a vector-valued noise

function, DNoise(), is used to displace the texture-space coordinates of the argument

vector to a scalar-valued noise function.  Again, this has the net effect of expanding the

band limits off the noise function, while also changing its visual character significantly.

Note how simple pseudo-code for this is:

VLNoise(  
v
p  )

return ( Noise(   
v
p  + DNoise(   

v
p  + 0.5) )

Note that the argument vector  
v
p , when passed to DNoise(), is displaced by a factor of

0.5 in all axes, to intentionally misregister the underlying integer lattices of the two noise

functions.

C code implementing this function looks like:

double VLNoise( point, scale )
Vector point;
double scale;

{
Vector temp, DNoise();
double Noise();

temp = DNoise( point );

temp.x += scale * point.x;
temp.y += scale * point.y;

* The major shortcoming of this model, as well of every other procedural model involving turbulent fluid
flow, is the lack of vortices.  Short of full dynamic solution of the Navier-Stokes equation [164], there is
currently no good, continuous model of fractal vortices in the computer graphics literature.
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temp.z += scale * point.z;

return ( Noise(temp) );

} /* VLNoise() */

Here we employ the variable scale to modulate the magnitude of the texture-space

distortion.

For simulating the swirling and streaming of the large-scale flow of global weather

systems, we can apply the same concept used in the construction of VLNoise(), that of

distorting texture space by composition of noise functions.  In this case, we add vector-

valued noise to the evaluation-point vector passed to the fBm function VLfBm(), which

in turn creates fBm from the VLNoise() basis function.  The magnitude of the texture-

space distortion is greater than that used above; the exact value used being determined

simply by qualitative evaluation of the results.

Pseudo-code for the function might look like:

Planet_Clouds(   
v
p , distortion, rescale, cutoff )

  
v
q  := distortion * DNoise(  

v
p  ) /* get scaled distortion vector */

result := VLfBm( rescale *  
v
p  ) /* get fBm cloud texture, in rescaled texture space */

if result < cutoff /* clamp the result, to provide cloud-free areas */
return( 0 )

else /* return a normalized value */
return ( (result - cutoff) / ( 1 - cutoff ) )

The weather-system texture is generated by the following C function:

double Planet_Clouds( point, distortion, rescale, H, lacunarity,
   octaves, offset, cutoff )

Vector point;
double distortion, rescale, H, lacunarity, octaves,

offset, cutoff;
{

Vector p, s, DNoise();
double result, fBm(), VLfBm();

/* get "distortion" vector */
p = DNoise( point );

/* scale distortion */
SCALAR_MULT( distortion, p );

/* insert distortion */
s = point;
SCALAR_MULT( rescale, s );
result = VLfBm( s, H, lacunarity, octaves );

/* adjust zero crossing (where the clouds disappear) */
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result += offset;
if ( result < 0.0 )

return ( 0.0 );
else /* normalize density */

return( result / 1.0+ offset );

} /* Planet_Clouds() */

This function, called with the argument vector (3.0, 0.7, 2.0, 9.0, 3.0, 0.0) created the

clouds over the planet seen in Plate 4.3.  The computed value in result is used to

represent the density of the clouds.  The cloud texture modulates the transparency of the

surface to which it is applied, in a manner similar to the fog in Plate 5.1, and it should

have the ability to cast shadows, as seen in Plate 5.2.  This requires evaluation of the

texture for shadow rays intersecting the cloud-sphere and attenuation of illumination by

the computed cloud density.

This stretched cloud texture is also useful for more prosaic landscape renderings

[91,95], as seen in Plates 1.2 and 1.3.

The texture-space stretching described above varies smoothly, with the value of

DNoise().  It is also possible to apply an fBm-valued distortion; indeed this might seem

to be a logical way to emulate the fractal character of turbulence.  Plate 5.3 shows this in

practice.  Unfortunately, the result looks more like raw cotton than turbulent fluid flow,

again due to the lack of vortices.

5.3  A Cyclonic Storm

One of the most salient features of the Earth's clouds at the global scale, is the spiral

eddy structures of the cyclonic and anticyclonic flows.  Models of cyclonic storms are

under development, as illustrated in Plate 5.4.  A number of features similar to this (but

less exaggerated), scattered with a Poisson disk distribution through the cloud texture

described above is foreseen to be a plausible approach to procedural modelling of

atmospheric eddies.
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Below is a function designed not to create fractal eddies, but rather one large cyclonic

storm with fractal cloud distributions that vary with scale.  It is quite preliminary and ad

hoc, but marks an interesting experiment in the modelling of natural phenomena with

procedural texture.

void Cyclone( texture, intersect, colour,
  max_radius, twist, scale, offset, omega, octaves )
/* texture & intersection coords */

Vector texture, intersect;
/* surface color */

Colour *colour;
/* arguments specified in vector given in text below */

double max_radius, twist, scale, offset, omega, octaves;
{

double radius, dist, angle, sine, cosine, eye_weight, value;
Vector point;

/* rotate hit point to "cyclone space" */
radius = sqrt(intersect.x*intersect.x+intersect.y*intersect.y);

if ( radius < max_radius ) {  /* inside of cyclone */
/* invert distance from center */

dist = max_radius - radius;
dist *= dist * dist;
angle = PI + twist*TWOPI*(max_radius-dist)/max_radius;
sine = sin( angle );
cosine = cos( angle );
point.x = texture.x*cosine - texture.y*sine;
point.y = texture.x*sine + texture.y*cosine;
point.z = texture.z;

/* subtract out "eye" of storm */
if (radius < 0.1*max_radius) {  /* if in "eye" */

/* normalize */
eye_weight = (.1*max_radius-radius)*10.;
eye_weight = 1.- eye_weight; /* invert */
eye_weight *= eye_weight; /* make nonlinear */
eye_weight *= eye_weight; /* make nonlinear */

}
else eye_weight = 1.; /* not in "eye" */

}
else point = texture; /* not in storm radius */

if ( eye_weight ) { /* if in "storm" area */
value = eye_weight *

(offset + scale*VLfBm(point,omega,2.,octaves));
if ( value < 0.)  value = -value;

}
else value = 0.;

/* thin the (default == 1) density of the clouds */
colour->red *= value;
colour->green *= value;
colour->blue *= value;

} /* Cyclone() */

This function, called with the argument vector (1.0, 0.5, 0.7, 0.5, 0.675, 4.0, 0.7), created

the cyclone shown in Plate 5.4.
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Note that in Plate 5.4, the large-scale features are distorted by stretching, while the

small-scale cloud features are not.  As the dynamics of the processes governing cloud

formation and dissipation vary with scale, a single fractal description is not sufficient.

(Our model may be seen as a crude first approximation to viscous damping in turbulent

flow.)  The particular formulation used in Plate 5.4 is indicated by observations of nature

(see Kelley [62] for striking photographs of the Earth's weather systems, seen from

space).  Incorporating variation of features with scale in our global cloud models may

increase their realism; this is currently under investigation.  Clearly much background

work could be done to link the statistical distribution of our clouds, at a variety of scales,

to that of clouds in nature.

5.4  Venus

Venus is a planet which can be modelled remarkably well with a procedural texture.

Venus has a particularly simple, fractal appearance: its primary markings are the huge

streaks in the clouds, as distorted by the Coriolis effect.  The Coriolis effect amounts to a

twist of the clouds as the square of the radius from the axis of rotation; see Plate 5.5.  The

following function creates the entire effect when applied to a pale yellow sphere.

Coriolis( texture, intersect, colour, scale, twist, offset, omega,
    octaves )
Vector texture, intersect;
Colour *colour;
double scale, twist, offset, omega, octaves;

{
double radius_sq, angle, sine, cosine, value;
Vector point;

radius_sq = intersect.x*intersect.x + intersect.y*intersect.y;
angle = twist*TWOPI*radius_sq;
sine = sin( angle );
cosine = cos( angle );
point.x = texture.x*cosine - texture.y*sine;
point.y = texture.x*sine + texture.y*cosine;
point.z = texture.z;

value = offset + scale*VLfBm( point, omega, 2., octaves );
if ( value < 0.)  value = -value;
colour->red *= value;
colour->green *= value;
colour->blue *= value;

} /* Coriolis() */
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5.5  Jupiter and Saturn

Gas giants such as Jupiter and Saturn are particularly easy to model, modulo the eddy

structure in the clouds.  For this we use a function much like Perlin's "marble" texture

[119].  This function perturbs appropriately-colored horizontal strata, which represent the

cloud bands on the planet. Enclosing a sphere so textured in a fairly dense, hazy

atmosphere can give a good approximation to the appearance of these planets.  The image

in Plate 5.6 is the result of a few hours of work, emulating the Voyager image in Plate

5.7.  Note that we can readily get a close approximation, but that the eddy structure that

characterizes turbulent flow on all scales, is conspicuously missing.

We can emulate Saturn-like rings using a disk concentric with the planet, with an

appropriate texture applied.  (See Plate 5.8)  Here we have used a one-dimensional fBm

as a transparency map on the disk, indexed by radius and suitably rolled off at the

appropriate inside and outside radius values.  Again, the model is entirely stochastic and

subjective.  Any resemblance to Saturn's rings, or the gaps therein, is entirely fictitious.

5.6  Terran Procedural Texture

The planet we geocentric humans are certain to be most interested in modelling is the

Earth.  In this section we develop such a model.  Note that in our planetary-scale

renderings the solid earth is represented, for reasons of rendering efficiency, with a

smooth sphere to which an elaborate procedural texture is applied.  There are two

drawbacks to this approach, which might be ameliorated by using displacement maps in a

non-raytracing renderer: the "mountains" cannot cast shadows, and they do not rise up

through the atmosphere.  The latter is a significant effect in the appearance of the Earth

from space - high mountain peaks rise above a significant portion of the atmospheric haze

and scattering.  See Plates 36, 77 and 113 in Kelley [62] for a view from space of the

island of Hawaii, and see how Mauna Kea rises from hazy sea level right through much
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of the atmosphere.  (Cartographers are well aware of this effect, and its usefulness as an

altitude cue in topographic maps. [50])  Modelling this effect is an area for future work;

for a first approximation, the smooth sphere is acceptable.

We now describe the step-by step development of a "terran" procedural texture,

largely as an illustrative example of how such complex texture functions come into being.

In the process, we hope to illuminate the source of the "parameter proliferation" that

tends to plague complex procedural textures, as well as comprehensive and more-

scientific models of natural phenomena.*  Plate 5.9 documents various steps in the

development.  C code for the completed texture is provided at the end of the chapter..

5.6.1.  Continents and Oceans

The first step in creating an earth is to create continents and oceans.  This can be

accomplished by quantizing a fractal (fBm) bump map as follows:

bump = VfBm(point);
if ( dot(bump, surface.normal) < threshold )

surface.color = ocean_color;
else surface.normal += bump;

where point is the ray/earth intersection point, VfBm() is a procedural vector-valued

fBm, and threshold controls the "sea level".  (Note that in our code fragments

henceforth we assume that operators such as += are valid for vectors as well as well as

scalars.)  This quantization, with very simple blue/grey coloring, gives us the effect seen

in Plate 5.9a.

* It is precisely the problem of managing this huge n-space of parameters, that Sims' genetic algorithms
[137 ,138] so elegantly address.
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5.6.2.  Climatic Zones by Latitude

Next we provide a color lookup table to simulate climatic zones by latitude; see Plate

5.9b.  Our goal is to have white polar caps, barren grey sub-Arctic zones blending into

green, temperate zone forests, which in turn blend into buff-colored desert sands

representing equatorial deserts.  (Note that this is not necessarily the most accurate color

scheme for emulating the Earth, where the major deserts generally bracket green tropical

equatorial zones, and are more ruddy than buff-colored.)  The coloring is accomplished

with a 256-entry color lookup table, which is indexed by the latitude of the ray/earth

intersection point.

5.6.3.  Fractally Perturbing the Climatic Zones

This rough coloring-by-latitude is then fractally perturbed, as in Plate 5.9c.  We

accomplish this perturbation by adding a random component to the latitude value when

determining the color, and taking into account the bump map, so that the "altitude" of the

terrain may affect the climate.  This can be accomplished with a code fragment similar to

this:

index = point.z + c1*fBm(point) + c2*DOT(bump, surface.normal);
surface.color = colormap[index]

where fBm() is a scalar-valued procedural fBm routine and c1 and c2 are scaling

parameters for adjusting the influence of latitude and terrain altitude.  The dot product

term represents the magnitude of the bump map in the direction normal to the surface;

this quantity should be computed and stored prior to applying the bump map.  Note that

altitude and latitude represent two independent quantities that could be used as

parameters to a two-dimensional color map; to date we have used only a one-dimensional

color lookup table for simplicity.
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Next we add an exponentiation parameter to the value of index computed above, to

allow us to "drive back the glaciers" and expand the deserts to a favorable balance, as in

Plate 5.9d.

5.6.4.  Adding Depth to the Oceans

We now modify the oceans, adjusting the sea level for a pleasing coastline and

making the color a function of "depth" to highlight shallow waters along the coastlines

(Plate 5.9e).  Depth of the water is calculated in exactly the same way as the "altitude" of

the mountains, i.e., as the magnitude of the bump vector in the direction of the surface

normal.  This depth value is used to darken the blue of the water almost to black in the

deep areas; the blue provided by atmospheric scattering will bring the color up to a

realistic value.  Note that, while we have not yet implemented it, it would also be

desirable to modify the surface properties of the earth-sphere object in the ocean areas,

specifically the specular highlight, as this significantly affects the appearance of the Earth

from space (again, see Kelley [62]).

5.6.5.  Increasing Realism by Fractal Color Perturbation

Finally, we note that the "desert" areas about the equator in Plate 5.9e are quite flat

and unrealistic in appearance.  The Earth, by contrast, features all manner of random

fractal mottling of color.  By interpreting a vector-valued fBm as an rgb tuple [108],

scaling it appropriately and adding the result to the color given by the index to the color

lookup table, we can add significantly to the realism of our model - compare Plate 5.9e

and f.

5.6.6.  Result

The resulting texture provides the surface for an Earth-like planet, the realism of

which is designed to be enhanced by the clouds described in section 5.2 and the
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atmosphere model described in section 4.1.6.  The ensemble is seen in Plates 4.3 and 4.4,

with another similarly-complex procedural model of a moon.  Note that in those plates

the fractal function used to create the continents is the heterogeneous fBm described in

section 2.3.2.5, thus the coastlines have a heterogeneous fractal dimension and the land

masses have an interesting variety of detail.  This is our preliminary model of a synthetic

planet devised to contain enough complexity and variety to merit extended investigation,

as a complete world unto itself.

5.7  Conclusions

The complexity of natural scenes is, in general, far greater than what we are currently

capable of modelling, geometrically.  As long as this is an obstacle, surface textures will

be useful for providing visual complexity beyond that in the actual shapes of the objects

in synthetic scenes.

The textures we have demonstrated here have proven usefulness in this application, as

seen in the color plates from throughout this dissertation.  They embody rich visual

expression, in relatively compact, formal, and deterministic procedural specifications;

therein lies their power.

The flexibility of the procedural approach to modelling fractal natural phenomena

will be demonstrated in the animation "Spirit of Gaea" which is in production at the time

of this writing.  This animation, which is being made with the help of Robert Cook,

Matthew Pharr, and Gordon Palumbo (senior undergraduate students in the Yale

Department of Computer Science), consists of a logarithmic zoom from space down to

the terrain of a fractal planet.  The range of scales will be extreme, starting with the entire

planet appearing pixel-sized on the screen, and moving in to a close-up of details of the

procedurally-rendered fractal terrain.  To demonstrate the scaling properties of the

procedural models, the zoom will be continuous, employing the same models (planet
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texture, atmosphere, cloud texture, and procedural height field) at all scales.  While many

such "Powers of Ten" zooms have been produced before, none has been made without

changes of models at different scales.  Thus the "Spirit of Gaea" animation will be an

unprecedented technical achievement.
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5.8  Sample Texture Code with Auxiliary Functions

/* Below is an example of an elaborate procedural texture which,
 * when applied to the surface of a sphere using the right 20-something
 * magic parameter values and a just-so color map, can do a nice imitation
 * of an Earth-like planet, literally creating (part of) a "virtual world".
 * Note that this function is surface-coloring and bump-map effect,
 * thus the sphere remains geometrically smooth.
 *
 * There are 22 arguments to this procedure, stored in the textArg[] array.
 * The following vector of parameter values (plus a color map) created the
 * planet seen in the Color Plate 1 of these course notes:
 *
 * .25 2 -.48 10 0 .45 300 2.6 .7 20 .75 220 170 20 .6 4 1.125 1.2 -.085 1 .3 0
 *
 * The code is in the form of one of the (many) cases in an enormous "switch"
 * statement in our ray tracer (John Amanatide's and Andrew Woo's
 * "Optik" from the University of Toronto's Dynamic Graphics Project).
 */

case PLANET:
/*
 * Perform initialization of fractal (spectral exponent) parameter:
 * textArg[1] is lacunarity, or the gap between frequencies
 * textArg[2] is the fractal codimension parameter
 * textArg[4] serves as static storage for the computed exponent
 *   (note that this is an idiosyncrasy of our implementation)
 * firstPlanetCall is a static flag variable, initialized to TRUE
 */

if(firstPlanetCall) {
textArg[4] = pow(textArg[1],(-0.5-textArg[2]));
firstPlanetCall = FALSE;

}

/*
 * Choose between fractal bump functions, based on the value in textArg[19]
 * (note that the high parameter number -- 19 -- indicates that this was
 *  added quite late in the development of the texture).
 */

if ( !textArg[19] ) /* use a "standard" fBm bump function */
bump = VfBm(texture, textArg[4], textArg[1], textArg[3]);

else { /* use a "multifractal" fBm bump function */
/* get "distortion" vector, as used with clouds */

distort = DNoise( texture );
/* scale distortion vector */

SMULT( textArg[20], distort );
/* insert distortion vector */

texture = VADD( distort, texture );
/* compute bump vector using displaced point */

bump = MVfBm(texture, textArg[4], textArg[1], textArg[3]);
}

/* get the "height" of the bump, displacing by textArg[18] */
chaos = -DOT(bump, hit->normal) + textArg[18];

/* set bump for land masses (i.e., areas above "sea level") */
if( chaos > 0.)  {

chaos *= textArg[5];
hit->normal.x += textArg[0] * bump.x;
hit->normal.y += textArg[0] * bump.y;
hit->normal.z += textArg[0] * bump.z;
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Normalize(&hit->normal)
}

/* if there's a colormap associated with the texture, use it */
if( cmap ) {

/* use a scaled "z" value for offset in color map */
temp = ABS(hit->intersect.z)*textArg[16];

/* fractally perturb color map offset using "chaos" */
/* textArg[7] scales perturbation-by-z */
/* textArg[17] scales overall perturbation */

temp = chaos*(textArg[7]*(1.-temp) + textArg[17]) + temp;
if ( temp > 0.) /* if above "sea level" */

/* "mountains" appear too "chunky", */
/* so exponentiate the color map offset */

offset = (int)(textArg[6]*pow(temp,textArg[15]));
else offset = 0; /* (don't mess with oceans) */

/* now do oceans; textArg[11] sets polar ice caps */
if ((offset < 0.)  || ((chaos <= 0.)  && (offset < textArg[11])))

offset = 0;

/* clamp color map offset to upper bound */
if ( offset > 255 ) offset = 255;

/* set surface color to calculated color map entry */
color = cmap[offset];

/* darken the "deep waters" */
/* (note that "chaos" is less than 0 here) */

if ( offset == 0 ) {
/* scale the effect */

chaos *= textArg[9];
/* make the effect nonlinear, according to */
/* the whim encoded in textArg[21] */

if ( textArg[21] )
chaos *= 1.-texture.z*texture.z;

/* limit how dark deepest waters get */
if ( chaos < -textArg[10] ) chaos = -textArg[10];

/* now darken the color of the deeper waters */
color.red += chaos * color.red;
color.green += chaos * color.green;
color.blue += chaos * color.blue;

}
/* else we are in the landmass areas, where the color */
/* is ...boring, so we'll mottle it with a vector-valued */
/* fBm, interpreted as an RGB value */

else if ( offset < textArg[12] ) { /* don't mottle snow! */
/* scale size of color-bumps */

SMULT(textArg[13], texture);
/* get the vector-valued fBm */
/* (note that we've hard-coded some constants */
/* in a feeble effort to fight parameter */
/* proliferation.)  */

bump = VfBm( texture, textArg[14], 2., 8.);
/* using only bump.x is a "feature", */
/* not a bug (don't ask me why!); */
/* more hard-coded constants used, */
/* to lessen parameter proliferation */

color.red += color.red * 0.5*textArg[8]*bump.x;
color.green += color.green * 0.175*textArg[8]*bump.x;
color.blue += color.green * 0.5*textArg[8]*bump.x;

/* now clamp errant color values */
if ( color.red < 0.)  color.red = 0.;
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if ( color.green < 0.)  color.green = 0.;
if ( color.blue < 0.)  color.blue = 0.;
if ( color.red > 1.)  color.red = 1.;
if ( color.green > 1.)  color.green = 1.;
if ( color.blue > 1.)  color.blue = 1.;

}
} else { /* no color map, so just use mottled texture */

color.red *= chaos;
color.green *= chaos;
color.blue *= chaos;

}
break; /* whew! */

/*
 * And now for some of the auxiliary functions and data referred to above...
 */

/* fBm constructed with VLNoise() */
double VLfBm( point, omega, lambda, octaves )

Vector point;
double omega, lambda, octaves;

{
register double l, a, o;
register int i;
register Vector tp;
double VLNoise();

l = lambda; o = omega;
a = VLNoise( point, 1.0 );
for( i=1; i<octaves; i++ ) {

tp.x = l*point.x;
tp.y = l*point.y;
tp.z = l*point.z;
a += o * VLNoise( tp, 1.0 );
l *= lambda;
o *= omega;
if (o < VERY_SMALL) break;

}
return( a );

} /* VLfBm() */

/* vector-valued fBm */
Vector VfBm( point, omega, lambda, octaves )

Vector point;
double omega, lambda, octaves;

{
register double l, o;
register int i;
register Vector tp, n, a;

l = lambda; o = omega;
a = DNoise( point );
for( i=1; i<octaves; i++ ) {

tp.x = l*point.x;
tp.y = l*point.y;
tp.z = l*point.z;
n = DNoise( tp );
a.x += o * n.x;
a.y += o * n.y;
a.z += o * n.z;
l *= lambda;
o *= omega;
if (o < VERY_SMALL) break;
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}
return( a );

} /* VfBm() */

/* vector-valued multifractal fBm routine */
Vector MVfBm( point, omega, lambda, octaves )

Vector point;
double omega, lambda, octaves;

{
register double tmp, lacunarity, o, weight;
register int i;
register Vector tp, tv, result;
double Noise(), VLNoise();
Vector DNoise();

lacunarity = lambda; o = omega; tp = point;
result.x = 0.0; result.y = 0.0; result.z = 0.0;

/* get intitial value */
weight = VLNoise( tp, 1.5 );
if ( weight < 0.)  weight = -weight;
tv = DNoise(tp);
result = SMULT( weight, tv );
for( i=1; i<octaves; i++ ) {

tp = SMULT( lacunarity, tp );
/* get subsequent values, weighted by previous value */

weight *= o * ( N_OFFSET + Noise(tp) ) ;
if ( weight < 0.)  weight = -weight;
if ( weight > 1.0 ) weight = 1.0;
if ( (weight<VERY_SMALL) && (weight>-VERY_SMALL) ) break;
tv = DNoise(tp);
tmp = MIN( weight, omega );
tv = SMULT( tmp, tv );
result = VADD( tv, result );
o *= omega;

} /* for */

return( result );
} /* MVfBm() */

/*
 * And now for the maniacs (we know you're out there) who'd type this in,
 * here's the color map used to create the planet seen in Color Plate 1:
 */
char planet_map[256][3] =
  {{1,14,81}, {176,134,80}, {170,123,72}, {164,113,64}, {158,103,56},
  {153,93,48}, {153,92,46}, {153,90,44}, {154,88,42}, {154,86,40},
  {154,84,38}, {154,83,36}, {155,81,34}, {155,79,32}, {155,77,30},
  {156,76,28}, {155,74,26}, {154,72,24}, {153,70,22}, {153,68,21},
  {152,66,19}, {151,64,17}, {150,62,15}, {150,60,14}, {149,58,12},
  {148,56,10}, {147,54,8}, {147,52,7}, {146,50,5}, {145,48,3},
  {144,46,1}, {144,45,0}, {142,45,1}, {141,46,2}, {139,47,3},
  {138,47,4}, {137,48,5}, {135,49,6}, {134,49,7}, {133,50,8},
  {131,51,9}, {130,51,10}, {128,52,11}, {127,53,12}, {126,53,13},
  {124,54,14}, {123,55,15}, {122,56,16}, {121,57,17}, {120,57,17},
  {119,58,18}, {118,59,19}, {117,59,20}, {116,60,20}, {114,61,21},
  {113,61,22}, {112,62,22}, {111,63,23}, {110,63,24}, {109,64,25},
  {108,65,25}, {107,65,26}, {106,66,27}, {105,67,28}, {103,68,28},
  {101,68,26}, {99,69,24}, {97,69,23}, {95,70,21}, {93,70,19},
  {92,71,18}, {90,72,16}, {88,72,14}, {86,73,13}, {84,73,11},
  {83,74,9}, {81,75,8}, {79,75,6}, {77,76,4}, {76,77,3},
  {74,76,3}, {73,75,4}, {71,74,5}, {70,74,5}, {68,73,6},
  {67,72,7}, {65,71,7}, {64,71,8}, {62,70,9}, {61,69,9},
  {59,68,10}, {58,68,11}, {56,67,11}, {55,66,12}, {53,65,13},
  {52,65,14}, {51,64,14}, {49,63,15}, {48,62,16}, {46,62,16},
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  {45,61,17}, {43,60,18}, {42,59,18}, {40,59,19}, {39,58,20},
  {37,57,20}, {36,56,21}, {34,56,22}, {33,55,22}, {31,54,23},
  {30,53,24}, {29,53,25}, {28,52,25}, {27,51,25}, {25,50,24},
  {24,50,24}, {22,49,24}, {21,48,23}, {19,47,23}, {19,47,23},
  {19,47,23}, {19,47,23}, {19,47,24}, {19,47,24}, {19,47,24},
  {20,47,25}, {20,47,25}, {20,47,25}, {20,47,26}, {20,47,26},
  {20,47,26}, {21,47,27}, {21,47,27}, {21,47,27}, {21,47,28},
  {21,47,28}, {21,47,28}, {21,47,28}, {21,47,28}, {21,48,28},
  {21,48,28}, {21,48,28}, {21,48,28}, {21,49,28}, {21,49,28},
  {21,49,28}, {21,49,28}, {21,50,28}, {21,50,28}, {21,50,28},
  {21,50,28}, {21,51,28}, {23,52,30}, {26,53,32}, {28,54,34},
  {31,55,37}, {34,56,39}, {36,57,41}, {39,58,43}, {41,59,46},
  {44,60,48}, {47,61,50}, {49,62,53}, {52,63,55}, {54,64,57},
  {57,65,59}, {60,66,62}, {62,67,64}, {65,68,66}, {68,69,69},
  {69,69,69}, {69,69,69}, {69,70,70}, {70,70,70}, {70,70,70},
  {70,70,70}, {71,71,71}, {71,70,70}, {72,70,69}, {72,69,69},
  {73,69,68}, {74,68,68}, {74,68,67}, {75,67,67}, {76,67,66},
  {76,66,66}, {77,66,65}, {78,65,65}, {78,65,64}, {79,64,64},
  {80,64,63}, {81,64,63}, {82,63,62}, {84,62,61}, {94,74,73},
  {104,87,86}, {115,100,99}, {125,113,112}, {135,125,125}, {146,138,138},
  {156,151,151}, {166,164,164}, {177,177,177}, {196,196,196}, {216,216,216},
  {235,235,235}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255}, {255,255,255},
  {255,255,255}};
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Chapter 6:  Conclusions

6.1.  Summary of Results

Our thesis is that there are several necessary elements for creating realistic synthetic

landscape images: convincing terrain models, fast methods for rendering them

realistically, atmospheric perspective for a proper sense of scale, surface textures to add

visual detail efficiently, and a global setting in which to situate them.  We have presented

original results in each of these areas.

6.1.1.  Terrain Models

We  have demonstrated an essentially new terrain generation method, termed noise

synthesis.  This procedural or functional method is more flexible than many of its

predecessors, in that it naturally facilitates local control of terrain character.  This has

allowed the development of more convincing, heterogeneous fractal terrain models.

These new terrain models can resemble ancient, heavily eroded mountains (Plate 4.2),

terrains on the very large scale (Plates 2.8 and 2.9), and can reflect more accurately than

pure fBm, the morphology of mountains (Plates 1.2, 2.5, 4,1, and 4.13).

We have generated the globally context-sensitive patterns of fluvial drainage

networks, as well as fluvial deposits, talus slopes, and diffusion effects in synthetic

terrain models through dynamic simulations of physical erosion processes (Plates 2.10-

2.13).  The simulations of fluvial erosion will serve as the basis of experimental
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verification of the published laws of sediment transport in research currently underway

with Prof. Bolton of the Yale Department of Geology and Geophysics.

6.1.2.  Ray Tracing Height Fields

We have developed the grid tracing algorithm for efficient rendering of detailed

terrain models.  This algorithm is general to all height field data sets.

Grid tracing is not the fastest of published ray tracing schemes for height fields; quad-

tree methods and the so-called parametric ray tracing algorithm are faster.  Grid tracing

remains, however, the most memory-efficient published algorithm for this purpose, and is

still the method of choice for memory-bound applications.

6.1.3.  Atmospheric Scattering

Atmospheric perspective is a critical element of convincing landscape renderings;

landscape painters have known this for hundreds of years.  Atmospheric perspective is a

result of atmospheric absorption and scattering of light, primarily the wavelength-

dependent Rayleigh scattering.  Constructing a general solution to the problem of

modelling atmospheric scattering of light is a difficult problem, and accurate models are

bound to be computationally expensive, due to the complexities of photon propagation in

the atmosphere.

Due to the need for atmospheric perspective, and the difficulty of obtaining it through

a physically correct model, we have devised and documented some simple, efficient

alternatives.  These models are based on a distillation of the primary physical behaviors

of Nature, yet remain elegant and computationally efficient.  They include both geometric

models of scattering aerosol density distributions (Plates 1.2 and 4.1) and of Rayleigh

scattering (Plates 4.2-4.4, and 5.1).  These models provide effective atmospheric

perspective at acceptable computational costs.
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6.1.4.  Procedural Textures

It is generally too expensive to provide geometric detail on the order of that found in

Nature, in models for computer graphics.  Fortunately, we can fool the eye rather

effectively by providing surface detail on models of limited geometric complexity.

Procedural or solid textures provide a flexible method for generating such detail in a

rendering, at acceptable computational cost (a cost which is, in general, considerably less

than that of providing a comparable measure of geometric detail).

We have demonstrated the development of a wide variety of such textures, mostly in

service of modelling natural phenomena.  These textures range from models of

sedimentary rock strata to clouds to entire planets (see most color plates).

6.1.5.  The Ensemble of Models

Taken together, these results comprise a significant advancement of the state of the art

in image synthesis, particularly of fractal landscapes.  We may now generate models and

images of significantly greater realism and fidelity to Nature, than was previously

possible.  This work also comprises significant progress in the development of a new

medium and process for the creation of fine art.  It is hoped that some of the images

created in the course of this work qualify as such.

6.2.  Future Directions

The work done so far lays the foundations for future endeavors in all the areas

addressed.  This overall effort is foreseen to culminate in a virtual universe, populated

with procedural fractal worlds which may be explored at will, along the user's chosen

path, at any distance, scale, or location.  Due to their procedural random fractal nature,

such worlds would embody as much serendipity for their "creator" as for the "casual

visitor".  It is our experience that, while we "control" the creation of such places and (in
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principle, at least) their visual manifestations, their stochastic nature imbues them with

what almost amounts to a life of their own, and thereby with a high surprise factor and a

rich store of serendipity.

Such a detailed and beautiful "virtual universe" should have significant monetary

potential in entertainment products.  The technology will first have to be advanced

substantially: hardware and software will be required to speed up rendering by several

orders of magnitude, and display and interaction devices should be improved both in

resolution and ergonomics.  Such advances are inevitable; in the coming years they will

occur, it is only a question of when.  When this work comes to fruition in that context, it

will be Big.

6.2.1.  Terrain Models

Fractal terrains represent a class of ontogenetic models of certain forms of naturally

occurring terrains.  There are, however, many types of terrains which have yet to admit to

convincing synthetic modelling.  Indeed, the fractal paradigm is of limited usefulness in

describing Nature, as not all naturally occurring forms are marked by self similarity of a

significant range of scale.  Yet there remains a wide array of essentially fractal terrains

which have yet to be modelled.  We now describe some foreseeable progress in this area.

6.2.1.1.  Heterogeneous Terrain Models

One of the primary insights driving our work is that introducing heterogeneity into

terrain models can broaden our repertoire of descriptive capabilities.  Given our bias

towards variations on fBm which preserve, to the greatest degree possible, the underlying

elegance of the fBm paradigm, we have implemented some of the most straightforward of

such models which have occurred to us.  There remain many relatively simple variations

which have yet to be implemented.
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For instance, consider the model of large scale terrains in which higher frequencies

are damped by the values of previous, lower frequencies in the fractal summation.  Given

that the underlying idea is that valley floors should be smoother than local maxima

(peaks), we should actually base our damping on the local value of the derivative the

terrain function, rather than the magnitude of the previous frequency signal: the latter

may occur on a steep hillside, which does not in any way qualify as a "valley floor".

While conceptually straightforward, we have deferred implementation due to the

increased computational complexity and the inelegance that entrains.  Nevertheless, this

approach should be evaluated experimentally.

There is another variation on that model which will be necessary in the foreseen

application of creating procedural planets which may be explored interactively, at any

level of detail.  In the current model, amplitude of higher frequencies is a monotonically

decreasing function, relative to that of a uniform fractal dimension, equal to the highest

fractal dimension in the heterogeneous function.  This means that once the terrain has

become smooth locally, it will never get any rougher, at any scale.  In practice, we should

allow the amplitude of higher frequencies to rise again after being damped by a lower

frequency.  Valley floors are not, after all, uniformly smooth; they may become rough

again at smaller scales.  This is foreseen to be another relatively straightforward

ontogentic adaptation which should prove useful in realistic terrain modelling.   It may

also prove useful in overcoming the problem of ever-increasing slopes in close zooms

into self-affine fBm terrain models. [133]

6.2.1.1.1.  Modelling Specific Features

There are many features of natural terrains which are common and salient, yet which

do not necessarily fit into the fractal paradigm particularly well.  These include terraced

features (as with mesas), ridgelines, volcanoes, batholiths, sedimentary stratigraphy, and

some large scale tectonic features (such as orogenetic belts), to name a few.  Other terrain
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features do not fit into the constraints of height fields: cliff faces, caves, arches,

sedimentary rock strata outcroppings, and the like.  Some of these features, such as

orogenetic belts, should admit fairly readily to straightforward ontogenetic description.

Others, such as non-height field features, will require an expensive paradigm shift.

Certain of these features, such as coherent ridgelines and strata features, are common

enough to call for concerted effort to model them.  Others, such as non-height field

features, are perhaps not worth pursuing until a conceptual breakthrough occurs which

makes their implementation more plausible.  It is foreseen that many of these features

could be generated through a simulation of orogenesis, as discussed below.

6.2.1.1.2.  Increasing Variety in Terrain

Fractal terrain models reflect some of the complexity of Nature.  They express this,

however, through what seems to be the simplest conceivable form of complexity:

repetition of a single form over a variety of scales.  Real terrains generally feature

complexity which does not admit to such simple description.  There may be a wide

variety of seemingly unrelated surface morphologies present at various nearby locations.

This could be addressed by simply compiling a variety of independent geometric models

and methods for transitioning between them, but there is little elegance in such an

approach.  This may remain necessary for full description of natural terrains, however,

until a fundamental paradigm shift (as occurred with fractal geometry) reveals hitherto

unrecognized commonalties.

Our bias in favor of simplicity in models, as prescribed by Occam's Razor, will

continue to lead us to focus on more elegant solutions, as long as they are seen to be

available.
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6.2.1.1.3  Using Novel Basis Functions

A simple, straightforward approach to increasing the descriptive power of fBm-based

terrain models is to use a variety of basis functions with varying shapes.  Our experiments

in this area have been very limited to date.  The approaches described by Mandelbrot

[74], Lewis [72], and van Wijk [160], termed fractal sum of pulses by Mandelbrot, allow

the use of any finite basis function, or set of functions as with wavelets [131], through

convolution with a sparse distribution of impulse functions.  For best results, however,

the distribution of the impulse functions should be Poisson-hyperdisk, i.e., there should

be a minimum radius between adjacent impulses.  At this time, we know of no efficient

method for procedurally generating such a distribution in n-space; all known schemes

(due to the context-sensitive nature of the problem) require pre-generation and storage of

a fixed distribution.  This directly trades storage space against the scale of the inevitable

periodicity in the resulting function.

Nevertheless, this approach deserves additional attention.  Simplifications such as

using a Poisson distribution can make the method more efficient, and the gain in

expressive power should be considerable.

6.2.1.2.  Erosion  Models

Our work on erosion models is still embryonic.  Once the problems of numerical

stability have been solved, we can begin to extend our results in both terrain modelling

and in experimental verification of the published models of fluvial geomorphology.

6.2.1.2.1.  Geophysical Simulation

By including the published erosion laws in an implementation of fluvial transport, we

can test the validity of these models in simulations.  Such simulations are foreseen to be

of interest to geologists and hydrologists. [13]  This is a benefit which was not foreseen



160

when we originally implemented erosion models simply to generate certain

morphological features in fractal terrains.

Work in this area is ongoing, and is expected to increase in pace after the completion

of this dissertation.

6.2.1.2.2.  Animation of Orogenesis

One of the most exciting prospects for the erosion models is animation of the process

of orogenesis through time.  It is fairly easy to generate a plausible function describing,

procedurally, the variations in friability (as with sedimentary strata) of underlying

bedrock.  This, coupled with a dynamic model of tectonic deformation and the erosion

models, could conceivably generate some striking animations of the process of formation

over time of mountain ranges and perhaps even features such as the Grand Canyon.

6.3.  Rendering Terrain Models

The grid tracing algorithm has served us well, making feasible the ray tracing of

large, highly detailed terrain models.  There are many improvements and advances which

can and should be made, however.

6.3.1.  Parametric Ray Tracing

The parametric method for ray tracing height fields [115] should be added to our

repertoire of rendering algorithms, due to its greatly improved efficiency.  As this

represents a significant coding effort, it has not as yet been undertaken.  It will

undoubtedly prove useful when it is available.  It will not, however, entirely supersede

the grid tracing code currently in use, due to its overhead in memory space.  For very

large height fields, where the application becomes memory-bound, grid tracing remains

the rendering algorithm of choice.
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6.3.2.  Procedural Ray Tracing

Most algorithms for ray tracing height fields assume a precomputed height field of

fixed, uniform spatial resolution.  This assumption may be valid for many datasets, such

as USGS DEMs (digital elevation maps) and data from planetary probes.  But the

character of discrete sampling and reconstruction, and the perspective projection, makes

necessary adaptive level of detail in the terrain model, for high levels of realism.  That is,

feature size in model space should vary as the square of the distance from the eyepoint, to

maintain detail in the foreground and avoid aliasing in the distance.

6.3.2.1.  Promise and Limitations of Procedural Terrain

Rendering

Adaptive level of detail is a stickier problem than it seems at first glance.  Simply

undersampling a random fractal function will lead to a reconstruction that varies with the

sampling rate.  Thus, as one zooms in to a landscape, the morphology and illumination

values may change dramatically with change of scale.  There may be no way to overcome

this, other than to precompute the integral of the function over the entire range of scale of

its geometric detail.  This assumes that the function is band-limited, which in turn limits

the detail available, which in turn (the self-affine character of fBm notwithstanding)

seems to violate the appeal of fractal models: the availability of potentially unlimited

detail.  At any rate, precomputing, storing, and accessing such integral information is

likely to be impractical, if not simply inelegant.

Nevertheless, procedural rendering has great appeal: we can imbue our images with

pixel-sized geometric detail at all ranges and locations, and we can use terrain models

which cannot be rendered properly otherwise.  Plate 4.1 is an example of this: this terrain

is fBm constructed with a basis function with a discontinuous derivative, which yields

coherent ridgelines in the resulting terrain.  Such ridgelines would become saw-toothed,
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if their geometry were undersampled, and (as with any stochastic terrain) alias in the

distance if oversampled geometrically.  Thus the procedural rendering has granted us the

ability to render a striking terrain model which would be otherwise unrenderable, and has

proved useful despite the drawbacks outlined above.

For our ultimate purposes of exploring procedural planets in an interactive setting, we

will require such procedural rendering, with or without its flaws.  It is hoped that artful

use of atmospheric perspective can mask the most egregious shortcomings sufficiently to

make the net result acceptably realistic.

6.3.2.2.  Quad-Tree Method

Procedural ray tracing with adaptive level of detail calls for a quad-tree data structure

[54,55], as that naturally accommodates the change in spatial resolution with distance.

The grid tracing algorithm is inappropriate in its naive form, as it assumes a fixed

resolution in the grid.  In practice, this has been overcome by changing to different

resolution grids at appropriate distances. [2]  The parametric algorithm may admit to

similar treatment, this is yet to be investigated.

At any rate, our implementations of procedural ray tracing currently under

development utilize quad tree data structures for spatial subdivision.

6.3.2.2.1.  Calculating Bounding Volumes

Efficiency in procedural schemes is largely dependent on accurate determination of

bounding volumes.  In the absence of such information, all terrain traversed must be

explicitly generated and tested for intersection the ray.  This is costly, and can be avoided

if the terrain function can be determined to be out of the path of the ray by some other

means.  Determining tight bounding volumes is a nontrivial task [15,54], and is an area of

current investigation [162].
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6.3.2.2.2.  Memory Management

Models with adaptive level of detail become large, in high resolution images.

Furthermore, a geometric element (i.e., primitive triangle) of the surface is likely to be

visited by only a few rays, in close temporal proximity in the rendering process, and

never referenced again.  Thus dynamic memory management is essential to the algorithm.

This is another area currently under investigation.

6.3.2.2.3.  Parallel Implementation

As with all our work, we use C-Linda to speed our procedural renderings.  We can

use the distributed computation model of network Linda not only to increase the cycles

applied to the problem, but to facilitate memory management as well.  When a single

processor is used to ray trace a procedural terrain at high resolution in the usual

horizontal-scanline-at-a-time paradigm, it may have to free parts of the model computed

at one end of the scanline before it reaches the other end, due to memory constraints.

Thus parts of the model may end up being evaluated repeatedly, which is highly

inefficient.  Any given part should be evaluated and stored once, referenced as many

times as necessary, then freed.  By managing the tasks assigned to workers in the Linda

paradigm, we can assure that each worker is constrained to work on a subsection of the

horizontal extent of the image.  Hopefully this extent can be kept small enough that this

reevaluation is unnecessary.  At the time of this writing, experiments are about to begin in

this area.

6.3.2.3.  Analytic Method

It is possible to use information about the derivatives of the cubic spline of the noise

function to devise a fairly efficient scheme for analytic ray tracing of noise-based height

fields and hypertextures. [162]  This is another area that merits further investigation.

Procedural geometric models with adaptive level of detail could then be devised by band-
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limiting the fractal function as a function of distance, which is quite straightforward.

[117]

6.4.  Atmospheric Scattering

Atmospheric scattering will remain a challenge for the foreseeable future.  This is an

area which has received much attention in the scientific literature, as it reduces to the

more general problem of particle transport in the presence of scattering media. [6]  Such

problems are of importance to the design of nuclear reactors, radar, etc., and in the theory

of stellar evolution and heat exchange. [18]  Thus, dramatic improvements in the

simulation of scattering are unlikely to come from the field of computer graphics.  We

have demonstrated, however, that by respecting the peculiar goals of computer graphics,

we can devise novel models which are useful for image synthesis.

6.4.1.  The Multiple Scattering Problem

Single scattering can be simulated fairly readily and accurately. [64]  Unfortunately,

in most interesting systems multiple scattering is an important factor.  This is much

harder to deal with.  Some believe that the multiple scattering problem may be effectively

addressed by Monte Carlo ray tracing [4], but it is the author's considered opinion that it

will probably only be addressed satisfactorily through solving for the equilibrium state of

energy transport, as with the radiosity method. [130]  This approach is facilitated in turn

by application of the Greengard-Rokhlin algorithm [42] as a three-dimensional extension

of the method described by Hanrahan et al. [46]  At any rate, there clearly remains much

work to be done in this area.

6.4.1.1.  Rayleigh Scattering

Experiments with several implementations of single-scattering Rayleigh models

indicate that multiple scattering is essential to realistic results in emulating the Earth's
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atmosphere: in single-scattering models, the sky simply isn't blue enough when the sun is

low to the horizon, indicating that short wavelengths are subject to extensive multiple

scattering.  This in turn indicates the development of a multiple-scattering Rayleigh

model for added realism in renderings of outdoor scenes.

6.4.1.2.  Clouds

Clouds are obviously an essential element in landscape scenes.  They might admit

fairly readily to geometric modelling with fractal hypertextures. [120]  But shading the

geometric model is another, perhaps more difficult problem: illumination in clouds is

largely a function of multiple scattering by high-albedo particles.  It is plausible a striking

(if not wonderfully efficient) cloud model could be had by combining a procedural

geometric model with a volumetric radiosity illumination model, as mentioned above.

This is, therefore, a rich area for future research.

6.4.2.  Monte Carlo Single Scattering

Given that multiple scattering is a hard and largely unsolved problem, what can we do

effectively?  Single scattering can provide a useful first approximation for image

synthesis purposes, and can be implemented in a fairly straightforward manner with

Monte Carlo methods, similar to those used in distributed ray tracing. [23,25]

6.4.2.1.  Ray Marching

As in the distributed ray tracing paradigm, a Monte Carlo variant of the midpoint rule

can be used to approximate the illumination integral along an optical path by "marching'

the ray along intervals, and firing secondary rays towards light sources from random

points within each interval.  This sample is then used to represent the illumination for the

entire interval, and subsequently the scattering towards the ray origin.  For non-

homogeneous aerosol density distributions, such as those described in Chapter 4, the
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width of these intervals might be normalized by aerosol density, rather than spatial

extent; this represents yet another problem currently under investigation.

6.4.2.2.  Atmospheric Shadows

The ray marching algorithm sketched out above would immediately yield

atmospheric shadows, as cast by mountain peaks into the mists below, and crepuscular

rays (sunbeams) cast by clouds.  As is demonstrated by many photographs and paintings

of landscapes [40,49], these may be highly desirable aesthetic effects.  Thus some such

scheme should be implemented and added to our ray tracer.

6.5.  Procedural Textures

Procedural textures will remain mostly an application, perhaps pursued more in

commercial software development than in academic research.  The topic is still of vital

interest to practitioners of computer graphics, as the recent acceptance of our second

course in the area, proposed for SIGGRAPH '93, indicates.  There also remain some

interesting challenges in the area.

6.5.1.  Clouds

As the color plates illustrate, we have had some success in developing elegant, two-

dimensional models of clouds.  Again, clouds are essential to landscape renderings, and

the potential for extension of existing models is almost unlimited -- there are a great

variety of cloud types in Nature, and we have effectively emulated but a few.

6.5.1.1.  Geometric Models

It is foreseen that creating models of certain cloud types -- most notably, cumulus --

might prove relatively easy, using fractal sum of pulses or hypertexture approaches.

Unfortunately, while such models might be straightforward to specify, they may prove
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difficult to render efficiently.  The sheer geometric complexity of most clouds challenges

the development of efficient rendering algorithms.  Add to this the fact that clouds do not

have surfaces as such, only density distributions, and the complexities of illumination

described above, and we see that we have a truly significant challenge in modelling and

rendering.  No immediate breakthroughs are foreseen in this area, other than the

application of the Greengard-Rokhlin algorithm to radiosity illumination calculations.

The sheer importance of clouds in terrain renderings insures that work in this are will

continue, however.

6.5.1.2.  Modelling Turbulence

A closely related topic is procedural modelling of turbulence.  This has applications

in modelling clouds, smoke, galaxies, and indeed almost any common instance of fluid

mixing.  A convincing, continuous (i.e., non-particle system) model of the transition from

laminar to turbulent flow in smoke rising from a cigarette, using something significantly

more computationally efficient than a full Navier-Stokes solution, would be a significant

accomplishment in computer graphics.

Turbulence is composed of a hierarchy of eddies.  It seems plausible that successive

application of annular-twist distortions to some underlying function, over a range of

scales, might produce an emulation of turbulence in two dimensions.  Toroidal distortions

might achieve the same effect in three dimensions.  Wavelet analysis, with similar

wavelet functions, might be used to predict the success of such models and to tune the

basis function shapes.  These are ideas which deserve to be tested and evaluated at least

for subjective effectiveness in modelling turbulence.

6.5.2.  Planets

As we eventually intend to populate a synthetic universe with procedural worlds to be

explored interactively, we will need to develop and extend our models of planets.  This
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will be largely an artistic undertaking, but an increased variety of procedural models will

be required to maintain a high level of interest for explorers of such places.

6.5.2.1.  Heterogeneous Virtual Planets

Interest in such models will be largely a function of their heterogeneity -- "variety is

the spice of life", after all.  We have developed some preliminary heterogeneous models

which provide greater variety in landforms.  Relatively little work has been done in this

area to date, and more results are there to be obtained.  As greater complexity in the result

is sought the underlying algorithms, the elegance of which we have worked so hard to

retain, is bound to be ever more compromised.  Thus this work, too, is likely to be

pursued more in the realm of commercial product development than in academic

research.  There may yet remain some characterization and classification work to be done

in that context, though.

6.5.2.2.  Refining Parameter Space

As was demonstrated in Chapter 5, complex procedural models, and indeed all

models of complex natural phenomena [32], tend to inflict upon the user an undesirable

proliferation of picayune numerical parameters with obscure effects on the model.  Each

parameter increases the dimensionality of the n-space which the user must search for the

desired result.  Thus an essential part of any concerted effort to make such models usable,

is to determine the principal components of the relevant parameter space, and then to

provide some meaning to the resulting parameters, which will be in some way intuitive to

the user.  This is not an easy task.

6.6.  Modelling Vegetation

A salient feature of most landscapes, which has been almost entirely missing in our

models and renderings, is vegetation.  There are good reasons for this omission: first, the
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dearth of convincing geometric models of bushes and trees (arguably the most important

plants in landscape images) and second, the substantial difficulties in dealing with the

spatial frequency content of vegetation.  If the first were available, the second might

make it unusable for the purposes of production image synthesis.  It is almost certainly

not feasible to derive illumination integrals for pixels depicting distant, geometrically-

modelled vegetation, with point samples as in ray tracing.  Such an integration would fail

to converge with a reasonable number off samples, in general.

The most promising approach is a hierarchical model such as that proposed by Kajiya

[53], in which a geometric model is employed up close, a texture at mid range, and a

surface lighting model in the distance.  It is not immediately apparent how any of these

models should be formulated, or how to handle transitions between them.  The need for

such models of vegetation assures that work in the area will, however, continue. [124]

6.7.  Virtual Reality

The ultimate application of this work may be in a virtual reality entertainment setting.

The scenes we have devised, and the capability of creating complex, intriguing

procedural planets should prove rich in entertainment value, once the capability is in

place to explore such scenes interactively with sufficient detail and realism.  Such

creations may serve as settings for games, exploration, or meditation.  Their rich intrinsic

beauty should be able to hold the attention of "visitors" for a significant period of time.

(Humans are invariably most interested in the doings of other humans, however, so the

most popular applications will undoubtedly include representations of people, something

entirely outside the scope of this work.)

6.7.1.  Displays and Input Devices

Current technology for virtual reality is crude, to assess it charitably.  Displays

generally feature unacceptable resolution and color, and are too bulky for comfortable
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use.  Input devices often feature poor spatial resolution, range, latency, and reliability.

But these things merely represent engineering problems, problems which will be solved

in years to come.  In five to ten years, those solutions will be implemented in mass-

produced, low-priced, ubiquitously available devices which every average Western

family will have in their homes.  Such progress is inevitable, and we computer graphics

researchers need not concern ourselves with the issues; they will be solved for us, and

soon.

6.7.2.  Real-Time Rendering

Another problem that is the concern of graphics researchers, is real-time rendering.

Currently, realistic rendering cannot be done at a sufficient rate by anything less than the

absolute state of the art graphics engines, and even these do not approach the level of

realism achieved in our work.  Three factors will contribute to the solution of this

problem: hardware improvements, more efficient algorithms, and code of improved

efficiency.  The major improvements will be made in first two categories; graphics

programmers are generally already in the habit of writing efficient code.  Algorithmic

improvements are difficult to predict, as they tend to take the form of unforeseeable

conceptual leaps.  The parametric method for rendering height fields is a good example:

the algorithm is non-obvious, and may have gone unthought of for an arbitrary period of

time.  There is simply no telling when and where the next conceptual discontinuity will

occur.

What is predictable, is the continued exponential advance in the speed of computation

devices.  This alone might eventually effect the orders-of-magnitude speedup we

currently require.  At the time of this writing, the time required to render one of our

image at high (e.g., HDTV) resolution is on the order of hours.  We need to get this down

to about 140 frames per second (two 70 Hz channels, one for each eye in a stereoscopic

display).  This amounts to a gap of about six orders of magnitude, base 10.  It would
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wasteful to simply wait for hardware advances to close such a large gap.  Fortunately,

those interested in simulators of various sorts are constantly working on efficient

solutions to the problems of adding realistic visual details to real-time rendering systems;

we may be able to borrow some of their solutions, such as Gardner's table-lookup

schemes for fractal texture generation. [37,38]

6.7.3.  Forecast

When this technology matures into a virtual reality product, the economic opportunity

will be enormous.  As a next-generation video game, the market will comprise just about

every young person who can afford it.  This will require the convergence of several

technologies: displays, interaction devices, and rendering.  We see our role in this

development process as that of refining aesthetics and realism in virtual worlds, so that

when the technical capability matures, we will have a virtual universe worth exploring

already "in stock".

Perhaps less lucrative, but far more interesting, are the prospects of this peculiar

medium and process as fine art.  Our capabilities in image synthesis are currently

insufficient for creation of what could stand comparison to established media such as

painting and sculpture.  We need to discover potentials and develop craftsmanship, to

levels orders of magnitude beyond our current capabilities.  It is not immediately evident

what the "right" solutions are, particularly for issues of the physical manifestation of the

art object itself.  Ours is a highly conceptual process, the import of which lies mainly in

the machinations through which the image comes into being.  But marketable artworks

are either objects or performances, and we do not yet have the means to create either,

with quality comparable to other media in the fine arts.  Thus the process is reasonably

advanced, but the medium is embryonic.
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The most exciting future challenge of this work is the development of a fully mature

capacity for the creation of fine artworks.  This opportunity is unbounded, and will

occupy the author for the foreseeable future.
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Appendix A.  Parallel Computation

7.1.  The Linda Paradigm

C-Linda [16] is a coordination language [17] which greatly facilitates marshaling the

computational resources in asynchronous MIMD (multiple instruction, multiple data)

parallel computations.  C-Linda extends the C language by exactly six statements.  These

six statements handle, transparently, the machinations of multiple process control and

communication.

The beauty of Linda, for researchers uninterested in the picayune details of parallel

strategies, is its simplicity.  Processes are spawned by calling the eval() statement.

Communication is handled with the out() , in() , rd() , inp()  and rdp()

statements.  These statements move data in and out of tuple space, a shared memory

space with a relational database-style reference mechanism.  Data is removed from tuple

space with in() and referenced with rd().  These are blocking operations; inp() and

rdp()  provide equivalent non-blocking operations.  The Linda user confronts

parallelism at this very high level; all of the considerable complications of memory

management, interprocess communication, and process control are taken care of without

the need for direct orchestration by the Linda programmer. This can simplify immensely

the task of writing a parallel program.
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The fact that C-Linda is an extension of the C language facilitates parallelization of

existing C programs.  It also ensures portability of the resulting code, as there are no

architecture- or platform specific constructs.  C-Linda also facilitates maintenance of the

capacity for sequential execution in a given program, by coding Linda portions with

conditional compilation flags.

Our experience has been that we can readily achieve a near-linear speedup, per

processor, in ray tracing applications using C-Linda.  This can be accomplished with a

minimum of effort (e.g., a day or two of design and coding time) while maintaining code

portability and sequential execution capacity.

Our initial C-Linda implementation was the parallelization of the Optik [1] ray tracer

of the University of Toronto's Dynamic Graphics Project.  Subsequently, Rayshade [67]

was parallelized.  Next, Rob Bjornson parallelized our erosion code [10].  We are

currently working, with Robert Cook and David Kaminsky of the Yale Department of

Computer Science, on parallelization of the Raypaint interactive ray tracer shell and on

Linda schemes for procedural height fields.  These last two applications represent the first

we have worked on where the parallelization was not a fairly trivial operation, as the

former requires empirical tuning to find optimum task granularity, and the latter involves

dynamic memory management.

We now describe our work with C-Linda.  Please keep in mind that the most

interesting aspects represent work in progress, and therefore reporting of definitive

strategies and results is not possible, at the time of this writing.

7.2.  Ray Tracing

Ray Tracing qualifies as an "embarrassingly parallel" application, in the MIMD

(multiple-instruction, multiple-data) paradigm.  The fact that each ray represents an

independent thread of computation (as there is, in general, no predictable coherence
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among adjacent rays) indicates MIMD parallelism over SIMD (single-instruction,

multiple-data).  Each processor should be free to follow the computational thread dictated

by the ray's path through scene-space, and there is no requirement for communication

with, or dependency on, other rays in the scene.  Furthermore, ray tracing is CPU-bound:

it will typically spend the bulk of its execution time in floating point operations, as

opposed to, for example, memory accesses.

All of these factors indicate an ideal Linda application.

7.2.1.  Screen-Space Subdivision

Much research has been devoted to parallelizing ray tracing algorithms.  None of it

has, to the author's knowledge, produced results worth referencing here.  The obvious

strategies, such as SIMD parallelization, subdivision of scene-space among processors,

assigning a processor per ray, etc., fail in the general case, each from its own foibles.

Due to the generality of the problem of image synthesis by the point sampling scheme of

ray tracing, most schemes designed to optimize any aspect of the algorithm can be

defeated by pathological scenes.  In light of this observation, it is the author's view that

the most sensible approach is to seek simple and elegant solutions which work well most

of the time, and to not bother too much with exceptional situations.

The aspect of ray tracing that we are out to optimize here, is speedup per processor in

a parallel environment.  The simplest, most elegant and effective approach we have found

to speeding this process is parallelization by screen-space subdivision.  In this scheme, a

parallel task granularity is defined by an area of the screen to be rendered as a distinct

task.  This scheme, too, may be foiled by pathological scenes: imagine, for example, a

scene where almost all the imaging computation time is expended in one tiny area of the

screen.  In such a scenario, one processor is likely to end up doing almost all the work,

and there will be little significant speedup from parallelism.  Experience shows that such
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scenarios are rare*, however, and thus screen-space subdivision is a viable general

strategy.

7.2.1.1.  Single Scanline Tasks

Given that we are going to subdivide screen space to produce our parallel tasks, we

need to decide how to do so.  The first idea might be one-pixel tasks.  This turns out to

have too small a granularity for Linda computations; communication overhead is

significant at this level.

The next idea is one-scanline tasks.  The scanline approach has the advantage of easy

checkpointing: as each processor completes a scanline, the "supervisor" process collects

that data and writes it to nonvolatile storage (i.e., a file on disk) as soon as all previous

scanlines are available and have been collected and written to storage.  Thus if the fifth

scanline is the first to be completed, it is cached in tuple space until the preceding four

scanlines are completed; then all five are written consecutively to the image file.  If the

rendering process is interrupted when the image is partially completed, all that is lost is

those scanlines upon which work has been started, but which have not yet been written to

nonvolatile storage.

Given this checkpointing scheme, there is little point in using a granularity smaller

than one scanline.  Furthermore, one-scanline tasks are big enough that communication

overhead is negligible.  Thus scanline granularity is suitable for our purposes.

* Such scenarios are not unheard-of, however.  In a scanline-block parallel rendering of the image seen in
Plate 9.1, the worker which gets the task of rendering the water just below the horizon usually holds up the
computation significantly, due to the fact that the oblique view of the ripples there triggers a high rate of
supersampling, with adaptive antialiasing enabled (as it always is, in our final renderings).
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7.2.1.2.  Watermarks

In the scanline scheme, the supervisor process may naively put all scanline task-

specification tuples into tuple space at once, at the beginning of the rendering.  Indeed,

we did this in our first implementation.  Workers then remove the scanline task tuples in

sequence (e.g., from bottom scanline to top), render the scanline, and place the result

back in tuple space for the supervisor to collect.

A serious problem was encountered with this scheme: when one or more workers fell

well behind, for whatever reasons, the other workers could eventually overflow the

capacity of tuple space.  This may be unavoidable, due to the fact that final image file

sizes range up to 100 Mb and more.  Our experience indicates that Linda does not

degrade gracefully upon tuple-space overflow: the worker who's attempted out()

caused the overflow simply dies and becomes a zombie process, without any notification

of other related processes.  Thus useful computation comes to a halt, but the other

processes continue to use up resources, blindly working away on a lost cause.  This is not

a desirable situation.

This problem can be alleviated with a watermark scheme.  In our implementation, the

supervisor only outputs task tuples up to a fixed number of scanlines above the last

finished scanline retrieved from tuple space.  Thus potential tuple space usage is limited

to a fixed upper bound.  This scheme may result in decreased efficiency due to idle

workers when no task tuples are available, but again our experience indicates that this

does not often happen.  (We know this, because our code is written to inform us with a

message to the terminal every n seconds that a worker is so idled, and we do not often see

these messages.)
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7.2.1.3.  Multiple Scanline Tasks

The single-scanline task is fine for non-antialiased images.  It would also be fine for

images antialiased by fixed-rate supersampling per pixel.  But the most efficient way to

antialias, in general, is to employ adaptive supersampling.  In adaptive schemes, adjacent

samples are compared by some measure of contrast. [89]  If a given threshold is

exceeded, then the area (e.g., pixel) being sampled is subdivided into smaller areas, upon

which the adaptive sampling routine is recursively called, until either the contrast drops

below the given threshold or a given number of levels of subdivision is reached.

This adaptive antialiasing causes the ray tracing algorithm to become context-

sensitive; there is now dependency among rays and communication may be required.

When we employ adaptive antialiasing, we typically limited it to a maximum of 64 or

128 rays per pixel.  Our renderings typically average about four to six rays per pixel.  To

assess the adaptive refinement criterion, we require one sample per adjacent pixel.  Thus

a worker assigned an area of the screen to render, will need to sample outside the border

of this area, at a rate of one sample per pixel (we refer to these as "external" samples).  As

the ratio of internal to external sampling rates is generally high, we may elect to simply

compute the external samples for every task area, as opposed to sharing data via

interprocess communication, which is an option for the overlapping borders of adjacent

areas.  In other words, we simply take the performance hit of repeating computations in

overlapping areas, in favor of maintaining task independence.

This in turn indicates assigning task blocks of several scanlines each, to minimize

overhead due to repeated computation of samples.  The upper bound to the size of these

scanline blocks is modulated by the need to avoid overflowing tuple space with results,

and the desire to efficiently checkpoint computations done so far.  That is, is the block

size is too large, tuple space may overflow before all n processors are able to place their
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results there, as the supervisor is constrained to remove scanlines in order (not being able

to store a large image file in its local memory).  Furthermore, even if this were possible,

we wish to write as much of our results to non-volatile storage as possible, as soon as

possible, to checkpoint the rendering in case of (the not-infrequent) interruption of the

rendering process.

We have employed this strategy with good results.  Overhead due to repeated

computation is typically low, on the order of a few percent for ten-scanline tasks.

7.2.1.4.  Postage Stamps

Given that we are going to take the hit for repeated computation of external samples,

we wish to minimize this penalty.  The way to do this is to maximize the ratio of internal

to external samples.  That is, we should maximize the screen area of the task, while

minimizing the total length of its border.  For reasons of simplicity in programming, it is

really only reasonable to consider rectilinear quadrilateral screen areas.  Given these

constraints, square or nearly-square "postage stamp" screen areas comprise the optimal

task.

Postage-stamp screen subdivision adds significant complexity to our Linda code; this

is undesirable.  It does, however generally speed the computation by a few percent.  Its

greatest advantage lies in its capacity to load-balance our landscape renderings.  In a

landscape rendering, high spatial frequency content tends to center around the horizon,

due to models receding into the distance there.  In a scanline-block task implementation,

the worker or workers which receive the task or tasks around the horizon tend to fall

behind, due to the heavy sampling rates called for by adaptive antialiasing there.  In a

postage-stamp decomposition scheme, work in this difficult area is more equitably

distributed among processors.
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7.2.1.5.  Boundary Tuples

The optimal solution may be to precompute the external samples, and place them into

tuple space for reference by all interested parties, without repeated computation.  This has

not been attempted to date due these concerns:  A) Time dependence: if the shared data is

not available in tuple space, what to do?  Compute it, and place it in tuple space?  Wait

for it to appear?  Either may entail performance hits.  B) Communication overhead: it

may turn out that the overhead for communication of such relatively small data sets may

be comparable to the time required to recompute them.  C) Complexity in programming:

implementing such a scheme will further complicate our once-simple Linda code.

Work is in progress to assess the legitimacy of these concerns, and the potential

efficacy of this approach.  In general, we feel that there are more fruitful areas of

endeavor, than implementing elaborate schemes to shave a few percent off our rendering

times.

7.2.2.  Shared-Memory Shared-Bus vs. Distributed Architectures

Our Linda implementations have been for both shared-memory, shared-bus

architectures and distributed workstation environments.  There are different assumptions

which may or may not be made with each.  As our original Linda work was on the Encore

Multimax, an architecture of the former type, we began by making assumptions which

hold only for such an architecture and which later needed to be amended -- though not

necessarily corrected -- for the distributed computing environment.

The chief non-portable assumption which worked for the Multimax and the Apollo

DN 10000, but not for distributed (i.e. "tsnet") computations, was the "fork" model for

eval().  In a UNIX "fork", an exact copy of a process' image is created, with only a flag

variable to tell the parent process from the child.  This image duplication allows the ray

tracer to first read in the scene specification file, then spawn pre-initialized workers by
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eval().  A tsnet eval(), however, starts a new process by calling the executable file

from non-volatile storage.  Thus each worker must individually initialize itself by reading

the input file or files.

A typical landscape rendering includes a height field of substantial size.  On a shared-

memory machine, the height filed data may be placed in shared memory and need not be

replicated, whereas in a distributed computation, each process must read and store the

height field data.  For a large number of workers, this repeated reading of the input data

can lead to contention over height field file access, and generates a significant overhead

in startup time (typically on the order of tens of seconds).

A concern in the use of shared memory is contention among the various processors

for access to the data stored in shared memory.  We have not carefully analyzed the

memory contention situation, but we have seen no evidence that this has been a

significant impediment to the efficiency of the algorithm.  The fact that the greatest

proportion of the rendering time for our images is spent on independent work such as

evaluation of procedural textures may help to alleviate potential memory contention

problems, but subjective evaluation of simple tests of rendering without such textures still

indicates no significant contention problem.

7.2.3.  Procedural Height Fields

In procedural rendering of terrain models, the model is only evaluated when a ray

"violates its airspace".  The model is stored in a hierarchical data structure, typically a

quad-tree, and evaluated with adaptive level of detail by distance from the eye.  As the

goal of the procedural method is to provide pixel-sized detail at all visible locations, the

structure containing the model can get very large (up to gigabytes) in high-resolution

images.  Procedural terrains are very expensive, computationally, to render (on the order
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of days on an single IBM RS/6000 640, for a 1280x1024 pixel antialiased image).  They

are therefore prime candidates for parallelization.

7.2.3.1.  Memory Management

The procedural model must be evaluated not only at the places where it is ultimately

visible, but also in non-visible areas as well, as these areas must be checked for

ray/surface intersection in order to rule them out.  These areas include the foreground

below the edge of the scene, areas masked by features between them and the eye, and off-

screen features checked for intersection with shadow rays.  As detail is a function of

distance, there may be a particularly substantial overhead involved in computing and

storing the non-visible portions of the height field in the foreground, below the edge of

the screen  Also, low lighting angles cause a greater overhead in of-screen model

evaluation for shadow calculations.

The procedural terrain itself is, in our applications, generated by the noise synthesis

method described in chapter 2.  Recall that this is not a particularly computationally-

efficient modelling method; therefore each portion of the model represents a substantial

investment of computing time, once evaluated.  We therefore wish to avoid recomputing

the model; rather we would prefer to store it, once computed, for as long as it will be

referenced in ongoing computations.

Due to the size of the highly-detailed model, we cannot usually save all such data, in

a uniprocessor implementation.  Due to constraints in the size of volatile memory, we

find that the requisite dynamic memory management scheme in the rendering code often

has to recycle memory storing the model at one end of a scanline, before it reaches the
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other end.  Thus the entire model may be recomputed at each scanline,* an event which

causes rendering time to go right through the roof, so to speak.

In a Linda implementation, we may constrain workers to preferentially render

horizontal screen extents where they have already worked.  This gains two advantages:

First, these extents will be width r/n where r is the horizontal screen resolution and n is

the number of workers.  Thus for n of reasonable size, they should be small enough to

avoid this model-recomputation problem, as the entire foreground model may fit into

local memory for that smaller horizontal extent.  Second, the storage required is more

likely to be small enough to fit in real memory, thus avoiding costly page faults.

7.2.3.2.  Load Balancing

Suppose one or more workers should fall behind, causing another worker to reach the

high water mark in task tuples in its preferred vertical swatch of the image.  This worker

may then search for the lowest (by scanline number) available tuple, and begin working

in this horizontal extent to help that worker which is farthest behind.  This may cause

model storage in the helping worker's original extent to be overwritten.  But, by keeping

track of first and second choices for horizontal extents, any given worker should be able

to successfully minimize its horizontal extent of concern, while helping to maintain load

balance.

This has not yet been implemented, thus we have no experimental evidence of the

efficacy of this scheme.

* One might immediately suggest rendering the image using vertical scanlines, but this A) violates standard
image-handling conventions, which nearly always assume horizontal scanlines in adherence to raster scan
conventions; B) therefore necessarily creates a sideways image which must subsequently be rotated by 90°,
which is not easy for a file that may be several tens of megabytes in size; and C) is not a general solution:
consider animations, where a camera may roll 90° or more, thereby inverting the problem.
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7.2.3.3.  Piranha Implementation

The load balancing problem becomes more interesting still in a Piranha scenario,

where the absolute number of processors available to the parallel computation is not

known, and is expected to be constantly changing.  (Piranha is a version of "tsnet", or

network Linda, which is designed to start a process on any available node on a network if

that node has been idle for some specified period, and to "retreat" when the node becomes

active again, as when the owner of the workstation returns to his or her keyboard.)  Here

the optimum width of the horizontal extents cannot be known a priori, as the number of

processors available is not known in advance.  Furthermore, optimal extent size changes

as the number of processors "on the job" changes.

Optimum load balancing in this complex scenario is a nontrivial issue.  We are

currently researching this area with the help of Robert Cook and David Kaminsky, of the

Yale computer science department.

7.2.4.  Interactive Ray Tracing

Yet another nontrivial parallel implementation is that of Raypaint, the interactive ray

tracing shell which has been fitted to both the Optik and Rayshade ray tracers.

7.2.4.1.  Raypaint description

Under Raypaint, the ray tracer performs adaptive subdivision of the screen, by the

same contrast-comparison mechanism used for adaptive antialiasing on the pixel scale.

Raypaint then uses the fast polygon filling routines of the X window system or the

Silicon Graphics "gl" graphics library, to fill the entire display screen with smoothly (i.e.,

Goraud) shaded quadrilaterals.  The image then appears to dynamically "come into focus"

as larger quadrilaterals are subdivided into ever-smaller ones, gradually increasing detail

seen on the monitor.
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That is the back end of the shell; the front end consists of a mouse-driven interface

whereby the user specifies areas of interest for preemptive refinement work.

The net result is a tool of great use, for rapid prototyping of images.  It facilitates

greatly decreased turnaround time in the loop of iterative aesthetic refinement of artistic

images, for instance.

7.2.4.2.  Granularity

Image-space refinement takes place with the aid of a quad-tree data structure.  Task

size could easily be as small as one screen-sampling ray per task; it is readily increased

by factors of additional levels in the quad tree (i.e., by powers of four).

Optimum task size must be determined empirically, and may vary from among

network environments.  Preliminary results with a network of IBM RS/6000 servers,

rendering over a gateway to an X window on a Sun Sparc 1, indicate a minimum task size

of three levels in the quad tree.  As a 512x512 image represents a quad-tree depth of eight

levels, the resulting effective tree is only three tasks deep.  Image rendering is greatly

speeded by the parallel computation; but the coarse granularity obviates much of the

interaction in refinement specification.

This parallel implementation is foreseen to be far more interesting, when run directly

on a shared-memory shared-bus graphics computer such as the new Silicon Graphics

multiprocessor machines.  Linda latency should be less, allowing finer granularity,

greater speed, and better interactivity.  Also, overhead in process startup time should be

substantially less, which greatly facilitates interactivity (no user wants to sit and wait for

a good part of a minute for an interactive program just to start up).
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7.2.4.3.  Piranha Implementation

We are currently developing, again with the help of Robert Cook and David

Kaminsky, a Piranha version of Raypaint.  Foreseen problems include startup latency and

graceful process retreats (both potential killers in an essentially real-time system such as

Raypaint), and determining optimum granularity with an unknown number of processors.

7.2.5.  Results

With the shared-bus and tsnet Linda ray tracer parallelizations, we have achieved

essentially linear speedup by number of processors, to within a few percent of optimal

linear time. [66]  With the procedural terrains, we may achieve a highly superlinear

speedup, due to efficiency wins outlined above (i.e., avoiding repeated model evaluation).

Piranha schemes should maintain these results, with the added overhead of starting and

stopping processes.

The efficacy of network-parallel Raypaint schemes is, however, highly questionable if

only because of the generally long startup latency.  Linda and Piranha Raypaint on a

shared-bus Silicon Graphics multiprocessor should be a real win, in terms of speed.  We

look forward to having the opportunity to try it out in the near future.

7.3.  Erosion Simulation

The other part of our work that has involved Linda parallelization is the erosion code.

For this application, the Linda coding was performed by Robert Bjornson in consultation

with the author.  The code produced was designed to run on the Intel iPSC/2; for details

of the implementation, see Bjornson. [10]  Also, David Kaminsky is commencing a

Piranha implementation at  the time of this writing.

The erosion code is an iterative computation on a regular grid (i.e., a height field).

The finite differences, as described in section 2.4, reference values at the nearest
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neighbors in the grid at each time step.  If we employ the simplest efficient spatial

decomposition -- subdividing the square height field into smaller squares -- it is readily

apparent that we will need to communicate values at adjacent edges of such sub-patches

at every time step of the simulation, to provide boundary conditions for the adjacent patch

or patches.

A typical simulation runs on the order of 104  to 106  time steps, though much longer

runs may prove desirable once a stable transport scheme has been implemented.

This parallel scheme represents a fairly high bandwidth of communication, as

compared to the ray tracing application.  This in turn indicates that this Linda application

may be better suited to a closely-coupled parallel architecture, where communication is

rapid, than to a network-distributed environment.  On a shared-memory machine the need

for Linda communication might be obviated, as workers could directly access the

requisite data in shared memory.  Nevertheless, Linda implementation might still be

preferred, for ease of coding and portability.

7.4.  Conclusions

Computer graphics is an applications intensive research area.  As such, we tend to put

substantial investments of time and energy into fairly large computer programs.  Thus we

would generally prefer to maintain portability so that these programs need not be

rewritten as hardware platforms come and go, as they so regularly do.  Also, the efficacy

of graphics programs in general is limited, at least in part, by the computational resources

which can be brought to bear in their execution.  Furthermore, by convention of the field,

the majority of graphics applications are written in the C language.  Finally, graphics

researchers may generally be inclined to work on problems more directly germane to

their field, than issues of parallel computation.  Yet, few work in an environment where

there is no more than one processor available to execute their code at any time.



188

Each of these factors indicates the use of C-Linda for computer graphics applications.

We have found that Linda readily facilitates simple parallelization of preexisting C

language programs, regardless of size, while maintaining both portability and sequential-

execution capacity .  Those italicized points add inestimable value to the C-Linda

language, as we simply cannot afford to spend significant time in writing device-

dependent code, and we are guaranteed to we lose nothing in the Linda-fication of our

precious code.*  What we can gain is speedup of our code by a factor nearly linear in the

number of processors used, or even substantially better, in exceptional cases such as the

procedural height fields.  Realism in synthetic imagery is our research goal; success is

partly a function of the number of cycles expended in a given rendering.  Thus Linda is a

boon to our research.  Without the power that Linda has made available, it is safe to say

that much of the research presented in this dissertation would not have been undertaken,

having been ruled out a priori as being computationally impractical.

Many computer graphics applications are as embarrassingly parallel as ray tracing.

Due to our emphasis on proceduralism, which implies that modelling functionality should

be built into the renderer, we have found that parallelization of one code -- our renderer --

automatically parallelized most of the rest of our software applications, such as

atmospheric and procedural texture code (which is built into the renderer).  And this for

just few days of programming time, spent some years ago: we have found that the Linda

portions of our code rarely need be revisited, usually only when a paradigm shift occurs,

such as moving from shared-bus to distributed computation.

* Anecdotally:  Having run, and extensively developed, our ray tracing code for almost three years under
Linda, the author found it necessary to return to sequential-execution mode during his summer spent at

NASA Ames.  We were astonished when the (104 -line) program compiled and ran sequentially
immediately, after simply changing the -LINDA conditional compilation flag in the makefile.
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The best recommendation of Linda, in our opinion, is that we have so little to say

about it.  We spent a day or two with it; it speeds our computations by several times.

We regard our research as concerning things other than parallel algorithms and

strategies; we would no rather spend time describing such things than we would

describing the workstations we use, their operating systems, or the car we drive to work

in.  Those things are not germane to our research, yet we expect them to be in place and

to operate reliably.  The transparency of Linda leaves it nearly invisible in our

applications, and this is exactly how we would have it.  And that in itself constitutes a

powerful endorsement of the Linda paradigm and the C-Linda programming language.

Linda should find many more uses in computer graphics.  In fact it should, in the

author's considered opinion, become a standard basis for graphics applications, much as

the C language now is.
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Appendix B.  A Panoramic Virtual Screen for Ray
Tracing

Preface

This appendix documents some of the results realized by the author during the

summer he spent at NASA Ames in 1991.  We present a specific mapping of the entire

celestial sphere to a rectinliear virtual screen.  It appeared as a section in the book

Graphics Gems III. [97]

8.1.  Introduction

With ray tracing's synthetic camera model, we can do something which would be

difficult to impossible to do with a real camera: create a 360° by 180° field of view

panoramic "photograph".  The standard imaging model used in ray tracing is that of a

pinhole camera with a flat virtual screen.  We can supplement this model with a

cylindrical virtual screen to obtain a 360° (or greater) lateral field of view.  By using

appropriate angular distribution of samples on the vertical axis, we can obtain a 180°

vertical field of view as well.

The standard virtual screen model used in ray tracing is equivalent to placing a piece

of graph paper in the "world", in front of the eye and perpendicular to the view direction,

then firing rays through the little squares (the pixels) on the grid.  (A notable

improvement to this naive scheme was described by Mitchell. [89])  Changing the field of
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view at a fixed image resolution corresponds to moving the piece of graph paper closer

to, or farther away from, the eye.  This scheme provides a good projection for relatively

narrow fields of view, but it breaks down for wide angles: if we attempt to obtain a 180°

field of view, the construction of the viewing projection becomes degenerate, as the eye

lies in the plane of the screen.  A field of view of greater than 180° in this scheme is, of

course, nonsense.

Thus with a standard virtual screen we can only approach, never achieve, a field of

view of 180°.  We can also see that, as we approach the 180° field of view, the distortion

introduced by the regular spatial sampling of the virtual screen grows: near the center of

the screen the angular width of a pixel is much greater than near the edges (see Figure

B.1).

Figure B.1.  Angular width of a pixel as a function of position on the virtual screen:
pixels near the edge of the screen subtend a smaller angle.

This distortion has the effect of, among other things, giving a sphere imaged near the

edge of the screen, a pronouncedly elliptical projection on the image plane.*  In a

landscape image, features around the horizon get pinched down, degenerated into a line,

as the vertical field of view approaches 180°.

* For an example of this, see the moon on the cover of the January, 1989 edition of IEEE Computer
Graphics and Applications. [108]
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Some distortion on the screen due to the viewing projection, is inevitable.  This is due

to the fact that the projection is an instance of a mapping of a sphere (the celestial sphere

surrounding the eye) onto a plane (the image plane).  The fact is, there exists no mapping

from the sphere to the plane f :S2 → R2 , such that f x( )− f y( ) = x−y .*  Cartographers

have long known this; hence the plethora of cartographic projections for maps of the

globe. [113]  Thus we may choose among various evils; among various distortions in our

images of the world, but we cannot avoid them altogether.  (It is interesting to note that

designers of camera lenses face the same quandry.)

In this appendix we describe a scheme for sampling a virtual screen in such a way that

we can map the entire celestial sphere onto a rectilinear image plane, with (what we deem

to be) "acceptable" distortion.  Our viewing projection, known to cartographers as a

cylindrical equirectangular projection [113], generates a lateral-stretching distortion.

The magnitude of this stretching grows with distance from the equator, i.e., with distance

from the horizontal bisector of the image.  Our projection does not become degenerate,

however, at a 180° vertical field of view.

8.2.  Cylindrical Virtual Screen

With the standard virtual screen, the horizontal field of view is determined by the

width of the virtual screen in world space, and its distance from the eye.  For a given

(finite) world-space width of the virtual screen, as the horizontal field of view goes to

180°, its distance from the eye must go to zero.  At 180°, the construction is degenerate,

as the eye lies in the plane of the virtual screen.

In the case of the standard virtual screen, jittering aside, samples are generally taken

at regular (e.g., equally-spaced) intervals on the screen.  The vector defining a primary

* One can find a proof of this in a textbook on projective or differential geometry. [29]



193

ray (i.e., a ray from the eye which samples the virtual screen) is therefore generally

determined by taking the vector difference of the sample point on the virtual screen and

the eye point, and normalizing the resultant vector.  As the sample cells on the virtual

screen are equally-spaced in screen space, we can determine the x  (i.e., horizontal) offset

as a linear function of the screen column being sampled:

x_offset [i] = i * sample_spacing

for i∈ [-screen_width/2, screen_width/2].

For a cylindrical virtual screen, the construction of the primary ray is not quite so

simple.  We need a linear increment in angle , not screen space.  This can be

accomplished by applying a rotation to a ray directed at the center of the virtual screen.

As this requires a matrix multiplication, and thus several floating point operations, we

may want to precompute an array of horizontal (relative to the "up" vector for the screen)

directions so that we only need perform this matrix multiplication once per pixel column.

The size of this array of vectors is, of course, equal to the horizontal resolution of the

virtual screen.  The accompanying C code illustrates the construction of this array.

This array stores the cardinal horizontal directions for rays sampling the n columns of

the virtual screen.  One might then ask, "how do we handle jittering?" For reasonably

large screen resolutions, a simple linear interpolation between adjacent cardinal directions

is an adequate solution.  (Linear interpolation across large angles would not be a good

approximation to the proper cosine distribution, but pixels are generally of small angular

size, so a linear approximation to the cosine is sufficient.).  Again, this is illustrated in the

accompanying C code.
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8.3.  Vertical Sampling

The cylindrical virtual screen described above allows unlimited horizontal field of

view: one can as easily render a 1° field of view as a 720° field of view; fields of view

greater than 360° yield periodic images, like wallpaper.  There remain problems,

however, with the vertical field of view.  These include distortion at very wide fields of

view, as the screen gets (relatively) too close to the eye, and a degenerate projection at

180° field of view.

The way we have chosen to obtain equal angular increments on the vertical axis, is to

vary the vertical increments as the tangent of the y (i.e., vertical) index of the pixel on the

virtual screen.  (We assume that y=0 at the center of the screen.) In our scheme we

construct two arrays of vectors, one for the horizontal directions and another for the

vertical increments.  To generalize for an arbitrary "up" vector, the latter is also an array

of vectors, rather than of scalar increments.  All vertical increment vectors are colinear

(i.e., scalar multiples of the "up" vector), and orthogonal to all horizontal direction

vectors.  To get the direction vector for a ray to sample pixel (x,y) on the virtual screen

then, we take the vector sum of entry x in the horizontal directions array and entry y in the

vertical increments array, and normalize.  (Again, see the code fragment.)

With this scheme, vertical fields of view greater than 180° yield periodic (but always

right-side-up) images of the scene.

8.4.  An Application: Martian Panorama

The panoramic virtual screen was developed for a specific application: creating

realistic panoramic views of Martian terrains to be viewed in a virtual reality setting.  The

work was undertaken at the Visualization for Planetary Exploration (VPE) Lab at NASA

Ames, in Mountain View, California, where the author worked in the summer of 1991.

The goal of the development of the panoramic virtual screen model was to supplement
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the existing, comparatively less-realistic, real-time rendering capability for terrain height

fields, with the enhanced realism and aesthetic quality available in (far from real-time)

ray-traced imagery.

The virtual reality implementation at VPE features interactive viewing of landscape

panoramas, using a head-mounted display which tracks the user's movements.  In this

mode a large (e.g., 6000 by 3000 pixel) static image is loaded into video memory, and the

display presents an appropriate viewport on the panoramic scene via real-time pan-and-

scroll frame buffer animation.  The image loaded into memory may be of arbitrary

complexity, as update requires only presentation of a new viewport, as opposed to

rendering an entirely new frame.  Thus both the update rate and the visual quality are

generally better than with real-time rendered animation.

At the outset of this work, VPE possessed the capability of Z-buffer rendering static

panoramas using available hardware rendering capabilities.  These panoramic views are

constructed by abutting a series of flat-screen views edge-to-edge.  The net result is a

kind of faceted-cylinder virtual screen.  (A cylindrical projection equivalent to that

presented here can be obtained by reducing the facet widths to one pixel.) As these

renderings use the hardware implementation of the viewing projection, they are prone to

same kind of vertical distortion as seen when using a standard virtual screen.  We sought

to recreate this cylindrical projection, with improvements to the vertical sampling, in a

ray tracer.  A ray tracer gives access to certain realistic effects not readily available in a

hardware Z-buffer renderer, e.g., shadows, atmospheric effects, and procedural textures.

[91 ,105]

A result of this effort is seen in Plate 8.1, a panoramic view of the Valles Marineris on

Mars.  Note the extreme bow-shaped distortion of the nearly-linear, parallel valley

features.  This distortion is a natural and inevitable by-product of the viewing projection

we have constructed.  Note also that the image was not designed to be viewed in its
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Figure B.2.  Eye point rotation scheme for stereo panoramas.

entirety, as it is reproduced here, but rather in a virtual reality system, wherein only a

viewport on relatively small area of the image is visible at any given time.  The idea was

to construct an image such that anywhere the user looked, they would see an appropriate,

if distorted, area of the Martian environs.  The distortion near the bottom of the image

serves to discourage the viewer from investigating that area; not altogether a bad thing, as

the fixed-resolution terrain data being imaged shows little detail there, where it is closest

to the eye point.

We have also implemented a method for creating stereo panoramas suggested by Lew

Hitchner at VPE.  In this scheme, the eye points describe a circle as the view direction

scans about the virtual screen (see Figure B.2).  A conventional stereo rendering using

two fixed eye points will lack stereoscopy around the direction defined by the line

through the two eye points, as the stereo separation goes to zero there.  This rotating-eye

model yields good stereoscopy over the entire 360° horizontal field.  Its implementation

appears in the code segment at the end of the appendix.
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8.5.  Conclusion

We have constructed a panoramic virtual screen for ray tracing.  This projection maps

the entire view-dependent celestial sphere to a rectilinear screen.  Introduction of

distortion is unavoidable in this sphere-to-plane mapping; the distortion in this

construction of the viewing projection is of a different character than that of a standard

virtual screen, taking the form of horizontal stretching of the image as one approaches the

poles of the sphere.  The resulting panoramic images may be useful for interactive

viewing of static imagery in a virtual reality system.

This panoramic viewing projection is interesting, as it is something that is relatively

straightforward to implement in a synthetic camera, but difficult-to-impossible to

accomplish with a real camera.
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8.6.  C Code Segment for Panoramic Virtual Screen
/*
 * Panoramic virtual screen implementation code fragment.
 *
 * Copyright (C) 1991, F. Kenton Musgrave
 * All rights reserved.
 *
 * This code is an extension of Rayshade 4.0
 * Copyright (C) 1989, 1991, Craig E. Kolb, Rod G. Bogart
 * All rights reserved.
 */

RSViewing()
{

Float magnitude;
RSMatrix trans;
Vector eyeOffset;
int x, y;

VecSub(Camera.lookp, Camera.pos, &Camera.dir);
Screen.firstray = Camera.dir;

Camera.lookdist = VecNormalize(&Camera.dir);
if (VecNormCross(&Camera.dir, &Camera.up, &Screen.scrni) == 0.)

RLerror(RL_PANIC,
"The view and up directions are identical?\n");

(void)VecNormCross(&Screen.scrni, &Camera.dir, &Screen.scrnj);

/* construct screen "x" (horizontal) direction vector */
if (!Options.panorama) {

/* standard virtual screen setup */
magnitude = 2.*Camera.lookdist *

tan(deg2rad(0.5*Camera.hfov)) / Screen.xres;
VecScale(magnitude, Screen.scrni, &Screen.scrnx);

} else {
/* For panorama option, we need an array of screen "x"
 * vectors which we will build later in the code.  At this
 * point, we just construct the required rotation matrix
 * (rotations being about the "up" vector) and point the
 * "scrnx" vector to the edge of the screen.
 */
Camera.lookdist = 1.;
magnitude = -deg2rad(Camera.hfov);
Screen.hincr = magnitude / Screen.xres;
Screen.scrnx = Camera.dir;

        RotationMatrix( Camera.up.x, Camera.up.y, Camera.up.z,
-0.5*magnitude, &trans );

VecTransform( &Screen.scrnx, &trans );
}

/* construct screen "y" (vertical) direction vector */
magnitude = 2.*Camera.lookdist * tan(deg2rad(0.5*Camera.vfov)) /

Screen.yres;
VecScale(magnitude, Screen.scrnj, &Screen.scrny);

if (!Options.panorama) {
/* Construct ray direction for standard virtual screen */
Screen.firstray.x -= 0.5*(Screen.xres*Screen.scrnx.x +

       Screen.yres*Screen.scrny.x);
Screen.firstray.y -= 0.5*(Screen.xres*Screen.scrnx.y +

       Screen.yres*Screen.scrny.y);
Screen.firstray.z -= 0.5*(Screen.xres*Screen.scrnx.z +

       Screen.yres*Screen.scrny.z);
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} else {
/* Panorama option: requires that we allocate & fill
 * horizontal and vertical direction arrays.
 */
Screen.horizdir = (Vector *)Malloc((Screen.xres+1) *

   sizeof(Vector));

/* Set eye separation for stereo rendering */
if (Options.stereo) {

if (Options.eyesep == UNSET)
RLerror(RL_PANIC,
  "No eye separation specified.\n");

Screen.eyepts = (Vector *)Malloc((Screen.xres+1) *
    sizeof(Vector));

if (Options.stereo == LEFT)
magnitude = .5 * Options.eyesep;

else
magnitude =  -.5 * Options.eyesep;

eyeOffset.x = magnitude * Screen.scrni.x;
eyeOffset.y = magnitude * Screen.scrni.y;
eyeOffset.z = magnitude * Screen.scrni.z;

}

/* Fill the array of horizontal directions and, if stereo
 * rendering, eyepoints.
 * The horizontal ("x") direction array contains rotations
 * of "scrnx".  Each entry requires construction of an
 * appropriate rotation matrix; rotation again being around
 * the "up" vector.
 */
for ( x=0; x<=Screen.xres; x++ ) {

Screen.horizdir[x] = Screen.scrnx;
        RotationMatrix( Camera.up.x, Camera.up.y, Camera.up.z,

x*Screen.hincr, &trans );
VecTransform( &Screen.horizdir[x], &trans );
/* Offset the eyepoints for stereo panorama */
if (Options.stereo) {

Screen.eyepts[x] = eyeOffset;
VecTransform( &Screen.eyepts[x], &trans );
VecAdd( Screen.eyepts[x], Camera.pos,

&Screen.eyepts[x] );
}

}

/* The vertical ("y") array varies as the tangent of
 * "scrny".
 */
Screen.vertdir = (Vector *)Malloc((Screen.yres+1) *

  sizeof(Vector));
for ( y=0; y<=Screen.yres; y++ ) {

Screen.vertdir[y] = Screen.scrny;
magnitude = 0.5*Camera.vfov -

    Camera.vfov * ((Float)y/Screen.yres);
magnitude = tan(deg2rad(magnitude));
VecScale(-magnitude, Screen.scrnj,

   &Screen.vertdir[y]);
}

}

} /* RSViewing() */

SampleScreen(x, y, ray, color)
Float x, y; /* Screen position to sample */
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Ray *ray; /* ray, with origin and medium properly set */
Pixel *color; /* resulting color */
{

Float dist;
HitList hitlist;
Color ctmp, fullintens;
extern void ShadeRay();
int ix, iy;

/*
 * Calculate ray direction.
 */
Stats.EyeRays++;
if (Options.panorama) {

/* Construct ray direction from vectors in tables,
 * using linear interpolation for jittering.
 */
ix = (int)x;
iy = (int)y;
if (Options.stereo)

ray->origin = Screen.eyepts[ix];
ray->dir.x = Screen.horizdir[ix].x +

     (Screen.horizdir[ix+1].x - Screen.horizdir[ix].x)
     * (x-ix) +
     Screen.vertdir[iy].x +
     (Screen.horizdir[iy+1].x - Screen.horizdir[iy].x)
     * (y-iy);

ray->dir.y = Screen.horizdir[ix].y +
     (Screen.horizdir[ix+1].y - Screen.horizdir[ix].y)
     * (x-ix) +
     Screen.vertdir[iy].y +
     (Screen.horizdir[iy+1].y - Screen.horizdir[iy].y)
     * (y-iy);

ray->dir.z = Screen.horizdir[ix].z +
     (Screen.horizdir[ix+1].z - Screen.horizdir[ix].z)
     * (x-ix) +
     Screen.vertdir[iy].z +
     (Screen.horizdir[iy+1].z - Screen.horizdir[iy].z)
     * (y-iy);

} else {
ray->dir.x = Screen.firstray.x + x*Screen.scrnx.x +

y*Screen.scrny.x;
ray->dir.y = Screen.firstray.y + x*Screen.scrnx.y +

y*Screen.scrny.y;
ray->dir.z = Screen.firstray.z + x*Screen.scrnx.z +

y*Screen.scrny.z;
}

(void)VecNormalize(&ray->dir);

/*
 * Do the actual ray trace.
 */
fullintens.r = fullintens.g = fullintens.b = 1.;
dist = FAR_AWAY;
hitlist.nodes = 0;
(void)TraceRay(ray, &hitlist, EPSILON, &dist);
ShadeRay(&hitlist, ray, dist, &Screen.background, &ctmp,

   &fullintens);
color->r = ctmp.r;
color->g = ctmp.g;
color->b = ctmp.b;

} /* SampleScreen() */
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Appendix C.  Essay: Formal Logic and Self-Expression

9.1.  Introduction

The digital computer is providing a rare opportunity for the fine arts: the advent of an

entirely new process, one with deep conceptual roots in areas normally held as alien to

the arts and with a mechanism of expression wholly new to the practice of artistic

creation.  As a potent engine of interpretation, the computer can be used to project the

implications of formal scientific descriptions of a world (any world) into images; in turn

these images may become artworks, artworks born of a bizarre new process, a process

based upon and entraining the rigor, beauty, and intellectual depth of philosophy,

mathematics and the physical sciences.  This peculiar process starkly juxtaposes the cold,

deterministic machinations of logic, with the ineffable, unquantifiable, spirituality of

artistic self-expression.  Those two distinct areas of human endeavor, so often viewed as

mutually inimical and irreconcilable, come together in service of a common goal of visual

aesthetic.

As a practitioner of this process, I will attempt to illuminate both the concerns of this

particular artistic process and the significance of its links to the fields of mathematical

logic and computer science.  While the arguments presented are necessarily technical at

turns, I will make every attempt to keep them comprehensible to the intelligent layperson

-- as generally-comprehensible as such an esoteric digression may be made to be . . .
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9.2.  The Thesis

The thesis I propose is this: self-expression in representational imagery may be had

strictly through formal logic; this practice marks a discontinuity of significant import in

the history of the creative process.  In addition, I claim that the resulting artworks

resulting are conceptually enriched by the intellectual underpinnings this approach.

When an artwork represents the unaltered result of an deterministic logical derivation, it

entrains a conceptual depth not commonly achieved in the realm of visual arts.

Only time and our culture can determine the validity of the first two  claims I make.

The last I can illuminate; that is what this essay attempts to do.

9.3.  Foundations

Science is the task of observing nature and deriving potent and internally-consistent

descriptions (models) of the systems observed.  Mathematics is the language of science; it

provides both a terse notation and a logically consistent framework in which to couch

such descriptions.  Computer science is the study of the complex logical system that is

the computer; it is largely based on the discipline of mathematical logic: the operation of

the modern digital computer is described completely by, and at the lowest level is literally

implemented in terms of, the predicate calculus of formal logic.

It is worth pointing out that it is a specific sub-branch of computer science, numerical

analysis, which concerns itself with the problems of performing mathematical

computations with a digital "computer".  Note the sudden appearance of quotes around

the word computer -- it turns out that this appellation is a misnomer: a (digital) computer

is more rightly viewed as a symbol-manipulator, a string-rearranger,* than as a

* The term "string" has a very specific definition in computer science, but for our purposes it is sufficient to
think of it as an arbitrary sequence of characters or digits.
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mathematical calculating device.  I point this out because this "string rearranger" model

of the computer will be essential to my treatment of the computer as an artistic tool or

medium.

9.4.  Artwork as Theorem

A formal system is a sort of game; it is a fundamental concept of mathematical, or

"formal", logic.**  For our purposes we may think of a formal system as a given set of

strings, called axioms, along with a set of rules for performing transformations on, or

changes to, those strings.  These are called rules of production.  Successive applications

of these rules of production to the axioms (which may be thought of as "input" to the

system) constitutes the derivation of a theorem in the system.  The specific sequence of

application of rules of production in the derivation constitutes a formal proof of the

theorem.

A simple, illustrative example of a formal system if Hofstadter's MIU system. [48]  In

this system, the only recognized symbols from which to compose strings are the

characters M, I, and U.  The only axiom, or starting (i.e., input) string is MI.  There are

four rules of production which may be applied to the axiom and its successors:

Rule I:  If a string ends in I, you may add a U to the end.

Rule II:  If you have Mx, where x is an MIU string, you may add Mxx to your

collection.

Rule III:  If III occurs in a string, it may be replaced with U.

Rule IV.  If UU occurs inside a string, you may drop it.

** See Douglas Hofstadter's "Gödel, Escher, Bach" [48] for a thorough, layperson's treatment of formal
systems.  Bertrand Russell and Alfred North Whitehead's "Principia Mathematica" [132] provides the
definitive mathematical treatment of formal systems.
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Every string derived from the axiom by these rules of production may be added to your

collection of valid strings.  Hofstadter challenges the reader to derive the string MU from

the given axiom MI, using the rules of production given for the formal system.  Note that

there is no ambiguity in these rules, no "maybes" or "kind of likes".  The results of an

application of a rule are deterministic; but there is choice in the order of application of the

rules.

This is a very simple formal system, but it reflects exactly the behavior to which a

computer is constrained: modifying strings by the application of well-defined

deterministic rules of production.

Why do we bring up this rigmarole?  Because this is exactly how a computer

operates.  We can describe the functioning of a computer completely through this formal

treatment; all other "higher-level" functions of a computer are built on top of, and

implement different instances of, such formal systems.  Formal systems have, in turn,

been studied intensively.  Early in this century, Bertrand Russell and Alfred North

Whitehead [132] set out to map all of mathematics into a single, unifying formal system;

their difficulties were shown to be theoretically insurmountable by Kurt Gödel in his

famous "incompleteness theorem".  (This theorem demonstrates that, for any 'sufficiently

powerful' formal system, there exist statements which are neither inconsistent with the

system nor provable or disprovable within the system).  In short, great minds of our

century and before have worked on the ramifications of the machinations of formal

systems; in fact, many smart mathematicians and logicians continue to do so today.

The consequence to us, of all of the above, is that when we are using formal logic

(i.e., formal systems) we are "standing on the shoulders of giants", intellectually.  There

is a rich, preexisting mathematical and philosophical body of knowledge in this area,

which we are implicitly drawing upon when we use the computer.
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How does this concern us, artistically?  As it turns out, all computer programs can be

mapped into formal systems.  Thus, when we use a computer, we are using a formal

system; we are utilizing formal logic.  Every time we execute a computer program, we

are causing the derivation of a theorem in a formal system.  "So what?" you might ask.

This observation might seem to trivialize, to render vacuous, any claim that the derivation

of a theorem in a formal system is in any way something special or intellectually weighty

-- after all, computers do it all the time, day in and day out, all around us.

But how often do we call the result art?  ("Too often", indeed.)  How often is the

"artist" cognizant of these arcane machinations?  How often can the artist claim to have

consciously engineered the entire procedure?  When the formal system involved is a

computer program written specifically by the artist for the purpose of producing the

artwork; when the program itself embodies much or even most of the power to create the

work; when the artwork represents something which could not have come into being in

any other way; then these observations vis a vis formal logic become interesting.  Indeed,

they gain great import.

9.5.  Theorem as Self-Expression

It is one thing to label a theorem derived in a formal system a work of art; it is another

to claim that work of art represents self-expression on the part of the artist.  Scientifically,

the latter claim is weak, as it can be verified only by the artist; no independent formal

verification is possible.  I maintain that the claim can be valid and is readily verifiable in

many cases, if only qualitatively (as opposed to quantitatively).  There exist examples of

such artworks -- the pure output of a computer program -- wherein it is readily evident

that something of the artist's soul has been bared.  As an example I offer "Blessed State",

Plate 9.1.
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Claiming self-expression through formal logic obviously involves massive constraints

on what constitutes successful practice and an acceptable result in the artistic process.

Yet another significant set of constraints is generated by the requirement that the works

be representational.  Abstract expressionism is an honored aesthetic in its own right, and

formal systems and the computer can be -- and have been -- used in this context.  But the

requirement of literal realism in formal imagery spawns a host of problems and concerns

which are only starting to be addressed, primarily in the research literature of computer

graphics.  Representationalism in synthetic imagery is, in general, an open problem.

Many of the problems of generating realistic-looking synthetic imagery have been

solved, albeit often in ad hoc ways.  Many such problems yet await satisfactory solution.

For example, specular reflection from glossy surfaces has been handled to nearly

everyone's satisfaction by ray tracing; however, general realistic lighting models --

including atmospheric scattering of light and interreflection between matte-finished

surfaces -- are still under active development.  In short, there are some things we can do

very well with the current techniques of computer graphics; others which are imminently

doable but not-yet-done; and some which are, and are expected to remain, "hard".  As an

active researcher in the field, I am involved in the effort to move more phenomena from

the category of "doable" to that of "done".  As a result, my own artworks more often than

not serve not only as a form of aesthetic self-expression, but also as illustrations of

techniques new to the field of computer graphics.  This adds a dimension of technical

significance to the works; however, I generally intend this to be transparent to the casual

observer.

In fact, one of my key intentions as an artist is to keep this entire esoteric process

which I am describing transparent, to make it invisible to the viewer.  There are a variety

of reasons for this: First, I do not wish to immediately and automatically invoke the

instinctive fear of mathematics that the average person feels (myself included).  Second,
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it is a research goal to have the image look as natural, i.e., non-computer-generated, as

possible; thus the formal process should be thoroughly sublimated in the result.  Third,

and most important, is that it would be no better than arrogant and obfuscatory to require

the audience to confront and grapple with these issues -- the images should be able to

stand on their own as aesthetic visual statements, outside of this technical context.  I say

"let them, or let them fail."

9.6.  Deterministic Formalism and the Creative Process

An artist requires constraints, if for no other reason than to narrow down the "search

space" wherein the desired result is sought.  The formal logic approach certainly provides

a rigorous set of constraints on the creative process.  It also provides some interesting

side-effects.

The determinism of the logic involved means that the result is reproducible: repeated

runs of the same program with the same input provide, modulo the occasional hardware

glitch, the same output.  The artwork is reproduced exactly.  (Or at least the numerical

metarepresentation of it is; more on this later.)  This is true despite the fact that

randomness is an essential element in all my images -- the randomness employed is a

deterministic randomness; it is not "truly" random, but what we computer scientists refer

to as "pseudo-random".*  Pseudo-random processes are simple yet sophisticated

constructions from the discipline of number theory which are, for practical purposes, fully

random (i.e., they lack predictable order or structure) yet are deterministic and therefore

reproducible.

* Note that throughout the following text, I will freely use the term "random", generally meaning "pseudo-
random" and thereby implying an ultimate determinism.
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The fact that I constrain my artworks to be purely the output of a computer program

insures that they feature this peculiar reproducibility.  This could never be true of a

painting, for instance, as a brush stroke is not an exactly reproducible act, on the

microscopic scale at least.  In the case of a computation the result is a string or, at the

lowest level, a number or sequence of numbers or digits.  This string or number can be

checked character-by-character, digit-by-digit, for exact fidelity; there is no ambiguity or

latitude for imprecision in the representation.  Viewed in the light of computational result

as artwork, and artwork as representational self-expression, this determinism and exact

reproducibility are downright bizarre.

9.7.  Distinguishing the Process

It is worthwhile to take a little time to point out what distinguishes this process from

the more traditional practices of fine arts, such as painting, sculpture and photography.

9.7.1.  Dimensionality

The product of this process is a two-dimensional image; this characteristic it shares

with painting and photography.  Like a painter or photographer, the artist is responsible

for choosing an interesting point of view and framing for the image.  As with a camera, a

geometrically precise projection of the three-dimensional world onto the image plane is

performed; painters have much greater latitude here.  Like a photographer, one is free to

roam the three-dimensional world, even to employ cinematography to add motion in a

temporal exploration.

Unlike either painting or photography, the artist is responsible for the creation of the

entire world being imaged: there are no preexisting objects "out there to be found" and

creatively imaged; all objects and all interesting visual detail must be created explicitly.

The elegant means we have for creating such visual complexity are at the heart of what

makes this process successful and interesting.
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9.7.2.  Visual Complexity: Fractal Models

Fractal geometry [77] is the key to generating potentially unlimited visual complexity

in my work, and in computer graphics in general.  Fractal geometry is a language of

shape, similar to the language of planes, circles, spheres, triangles, cones and cylinders of

the more familiar Euclidean geometry.  But as Benoit Mandelbrot has observed [77]:

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and
bark is not smooth, nor does lightening travel in a straight line..."

The vocabulary of shape of fractal geometry provides, describes such complex natural

shapes with great elegance.

There are two keys aspects to fractal descriptions of natural forms: self-similarity, or

the repetition of similar shapes at different scales, and randomness in the model.  The

first means that we need only describe one fundamental shape plus the relationship of its

manifestation to the scale at which it is manifest -- a very simple description indeed, for

an object of potentially-unlimited complexity (the complexity is simply a function of the

number of different scales at which we manifest the basic shape).  The second aspect,

randomness, is the key to having the resulting shapes look natural, rather than man-made

or (worse still) computer-made.  Control then takes the form of shaping statistical

distributions in random processes, rather than explicit specification of exact form.  Thus

we exchange exact control over the shape for power in automatic generation of complex

shapes: I have God-like powers in a Universe which has a will of its own, and the

constant capacity to surprise even me, its creator.

9.7.3.  Purity of Algorithmic Process

Of course, I could employ my God-like powers in this synthetic Universe to intervene

and make specific, local changes wherever I saw fit.  In adherence to a self-imposed

constraint of process, however, I do not allow myself to do this.  This often closes off
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access to the shortest route to a desired result (as with a desired hue in a given highlight),

by disallowing various local intrusions and modifications to the world or the image which

would, in practice, be relatively easy to execute.  What is gained, however, is purity of

algorithmic process.  Creation of an image becomes a dance with the opportunities and

serendipity granted by the powerful, random fractal models which I create, embellish and

(more or less) control.  By disallowing post-process meddling with the results of various

algorithmic processes I employ, I gain two compelling benefits: legitimacy in illustrating

the descriptive power of these abstract fractal models, and claim to an elegance in the

creative process -- the image is indeed a theorem proved, in one pass, in a formal

system.*

Adherence to principles of algorithmic purity legitimizes one of the key claims I

make about the significance of this process: that it entrains the intellectual depth of logic,

mathematics and computer science as its foundations.  In practice, it entails the pure use

of formal logic to obtain the desired result.

Again, another (more or less arbitrary) constraint I impose upon this process is that

the result represent self-expression.  Expressionism is a practice the popularity of which

has waxed and waned through the history of the fine arts; I do not claim that it makes my

work in any way "better", I only note that it constitutes a significant constraint upon what

I, as an artist, consider to be a successful result

* One could contest the claim that this is a one-pass process, on the grounds that the terrain models I image
are usually generated outside of the rendering process, in a separate step.  In my own defense I point out
that A) I apply the same rules of algorithmic purity in the terrain-model generation process, B) that program
could readily be incorporated into the renderer thus coupling them, and C) this is not always the case: I am
moving towards a completely procedural process wherein even the terrain model is created on-the-fly, as
the picture is being created (see Plates 4.1 and 4.3, which are entirely procedural).
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9.7.4.  Proceduralism

These concerns lead us to proceduralism. [126]  Proceduralism is the practice of

abstracting complex behaviors into relatively terse functions or algorithms which do not

contain specific information about details of the phenomenon, but rather encode that

behavior in a formal set of instructions which specify that behavior everywhere it might

manifest itself and which may be evaluated only when and where such information is

desired.

Thus in the procedural approach, a "virtual world" is abstracted into a compact

procedure or set of procedures.  These procedures are in turn controlled by a relatively

few parameters which affect (only) global control.  Alvy Ray Smith [140] called this

database amplification; I refer to the process of creating landscape images within this

paradigm "playing God in a found Universe" -- I may have God-like powers over these

worlds, but in  practice, because of the randomness they embody, they behave as if they

have a will of their own.  Furthermore, they have an ineffable sense of having existed a

priori; of somehow being inherent in the timeless, universal formal procedures that

specify the and of always having existed there as an aspect of Nature, or at least of

Mathematics, just waiting to be discovered.  As an artist, I simply interpret these forms

visually.  Thus they may represent, at least in part, "found art".  But there nevertheless

remains enormous latitude for the exercise of aesthetic judgment in the development of

any given image.  It is, after all, but one out of an unimaginably huge, if finite, multitude

of images which might have been selected (more on this later).

9.7.4.1.  Functions and Algorithms

Proceduralism in practice consists of devising functions which in turn are

implemented as algorithms, or unambiguous sequences of instructions telling the

computer exactly what to do, for any given input.  Functions are a mathematical concept.
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They may be viewed very simply as contraptions which assign values given as input, to

other values -- the output.  The input and output values might be very different: input may

be numbers and output colors, or other stranger and more subtle mappings.

Mathematically, we refer to the action of a function f  like this:

f :D→R

which simply says that f  sends input values from D  (the domain) to R  (the range)  It is

useful to distinguish the set of possible input values D  from the set of possible output

values R , as they may be quite different kinds of things.

The simplest kind of function is a scalar-valued function of a single variable, denoted

f x( ) = y .  (We use lower case letters to refer to specific values, upper case to refer to the

entire set from which the value may be chosen.)  A scalar value is just a single number.

A function of one variable has only one input value.

Most interesting functions are the more complex vector-valued functions of several

variables, denoted f x1, x2 ,..., xn( ) = y1, y2 ,..., ym[ ].  This particular function takes a

number (n ) of input values, and maps them to another set of m  output values.  Such

functions are more common in my images.  They typically take more than three values as

input: the three spatial coordinates of the location where the function is being evaluated

(as the function is defined over all of space) plus a set of variables controlling the

behavior of the function.  They output some small number of values, such as the red,

green and blue components of a certain color and a spatial vector used to modify the

apparent orientation of a surface (as with the water in Plate 9.1).

It is the concoction of functions like this with interesting visual behaviors, which

constitutes the first step in this formal creative process.  These functions are small parts of

a computer program, which are embedded in the much larger program which orchestrates

the creation of the picture.  Examples of such functions in action can be seen in the
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ripples in the water in Plate 9.1, as well as in the roughness of the moon and the coloring

of the mountains.  Each of these effects issues entirely from the functions evaluated on

the surfaces there (believe it or not, the water is a perfectly flat plane, and the moon is a

perfectly smooth sphere!)  The fact that the functions are defined over all of space allows

us to evaluate them anywhere we desire.  Thus the moon is carved out of an infinite block

of "moon-ness", the mountains out of a block of snow, rock and forest, and the water out

of an infinite expanse of abstract "sea".

9.7.4.2.  Global Parametric Control

The values xi  (i  denoting the numbers 1 through n ) which serve as input to our

functions are known as parameters.  The parameters beyond the three spatial coordinates

at which the function is being evaluated, determine the behavior of the function.  The way

these functions are usually constructed, those values affect the function's output

everywhere in space.  This amounts to global parametric control of the function's

behavior.

In practice this  means that, for instance, I may exactly specify an color for a light

source; if I dislike the resulting hue in a particular highlight (a local effect) I may change

the color of the light source accordingly, but this changes tones everywhere that light falls

in the scene.  Similarly, if I dislike the shape or location of a given wave in the water or

mountain peak in the terrain, I may change it, but this change will also affect all other

waves or peaks and valleys.  The randomness at the heart of the fractal models I use

grants both enormous flexibility and expressive power, but it also entails complete

abdication of control over specific details in relation to their global context.  While this

global parametric control represents a profound creative constraint, it also entails an

enormous (and often elegant) simplification of the final stage in the creation of the image:

after the program is written, all that is to be done is to select values for these parameters.
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9.7.5.  Self-Expression vs. Conceptualism

Conceptualism supplanted self-expression in the recent history of visual art, after

representationalism was deemed a solved problem and abstract expressionism lost its

novelty.  But this new process reopens the problem of representationalism.  It may thus

push us back a few steps in the cycle of aesthetic evolution (or is just forward, one step?)

And again, I wish to emphasize throughout this essay the depth of the conceptualism

inherent in this process, and to cast a faint glimmer of light into those depths.

9.7.6.  Lighting

The artist's responsibility for lighting in synthetic scenes brings this process into

relation with lighting as used for photography and stage performances.  This

responsibility is something new for landscape rendering, where artists have traditionally

relied on serendipity in Nature to provide striking effects.  As the author of a synthetic

world, we will find nothing there that we do not explicitly create.

The process of providing lighting is exactly analogous to stage lighting.  We have

light sources with color, brightness, direction, and area of influence.  We can position

those lights wherever we want.  We can have as many of them as we like (though in

practice I rarely use more than two -- a warm sunlight and a cool skylight).  In addition,

we are responsible for specifying, mathematically, the interaction of light with surfaces in

the scene: are they mirror-like, glossy, or matte?  or something different, perhaps

completely unnatural?  There are no set limits here.  This mathematical treatment of light

and color also marks a new practice in the visual arts; we will expand upon it later.

9.7.7.  A Model of the Creative Process

A particularly fascinating view of the parametrically controlled creative process is

that of searching n-space for local maxima of an aesthetic gradient.  Let me explain what
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I mean by this:  We have created a procedural, parametrically-controlled model of a

synthetic universe.  Say there are n independent parameters in that model and the

specification of its projection onto the image plane.  As these parameters are independent,

we can think of each as representing a degree of freedom or an additional dimension or

direction in which we may move.  Taken together, the n parameters define an n-

dimensional space or n-space for short.  In this space we are free to move not just up and

down, right and left, or forward and back, but in a whole lot of other (abstract) directions

as well.  This may seem obtuse to the layperson, but mathematicians never hesitate to

work in spaces with many more dimensions than the familiar three of our everyday

world.

The task of the artist is first to create these n parameters (n being usually around 200

to 300) and their (deterministic) meaning, through creating the procedures or functions

which they drive, then to "tweak" the values of these parameters to obtain a satisfactory

result or image.  The creation of the parameters in formulating the formal system

corresponds to defining the n-space; the process of refining their values, or choosing

axioms to start with, corresponds to searching that space for local maxima of an aesthetic

gradient.  A local maximum is location in the space from which all directions lead

"downhill", that is, it is a kind of hilltop in n-space.  "Downhill" is defined by the

aesthetic gradient function -- the completely subjective (non-deterministic) assessment on

the part of the artist of what constitutes a "better" image, in terms of the parameter values.

Obviously, this so-called "function" is not unambiguous: its value will depend on the

criterion by which the image is being assessed, and even on the mood of the artist at the

moment of evaluation.

Ambiguity notwithstanding, this n-space gradient-ascent model is more than just

entertaining: it points out that a given image represents merely a local maximum of the

aesthetic gradient field.  Other, more global maxima ("higher hilltops", corresponding to
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"better" pictures or possibly "better" self-expression) undoubted exist in the abstract n-

space of potential images defined by the formal system.  This is very much akin to noting

that a photographer might have gotten a better shot by choosing a different vantage point

or time, except that we have much, much more control here.  Creating and searching this

n-space is a strange way of obtaining self-expression.

9.7.7.1.  Searching N-Space for Aesthetic Maxima

What does this look like, in practice?  I have a bunch of numbers, usually about two

to three hundred, which define the entire scene I'm creating (other than the landscape

itself, which consists of thousands of numbers which, again, I don't allow myself to

change or fiddle with).  This is a lot of number to deal with.  And it turns out that if you

change more than one or two at a time, the effects are usually conflated, and you can't be

sure which change accomplished what effect.  Thus I spend long hours, massaging the

values one or two at a time, until I am sufficiently satisfied or exhausted to "call it a

picture".

This is a very tedious process.  It is also very obscure: no one else can hope to use my

programs -- the meanings of the parameters are simply too obscure for another artist to

practically deal with.  In fact, I am only really cognizant of their intended effects at the

time that I create the functions, this intent is quickly forgotten in the complexities of my

work and daily life.  If later I need to reconstruct that meaning, I generally have to go

back and look at the computer code that I've written, and figure it out by inspection and

the memory that that inspection triggers.

This is not a highly desirable interface or way of working.  When people ask me "can

other people use your programs, too?" I have to answer "no".  (I certainly lack the time

and patience to explain or document all of these things.)  This deplorable state of affairs I

would attribute to the youth of the method -- it is certain to be improved over time.



217

Powerful mathematical methods can be brought to bear in such endeavors.  Principle

components analysis may be used, for instance, to reduce the dimensionality of the

parameter space, and to maximize the effects of changes in parameter values (though

such reorientation of parameter vectors may destroy an original intuition as to parameter

meaning).

9.7.7.2.  Genetic Algorithms

One very promising method for managing the creation and search of the high-

dimensional parameter space is genetic algorithms.  In the genetic approach, we borrow

some concepts from biology, namely genotype, phenotype, mutation, and sexual

reproduction.  Genotype is the encoding of an organism's form in its DNA, while

phenotype is the physical manifestation of that coded form in an actual organism.

Mutation is the spontaneous change in the encoding itself, and sexual reproduction is the

recombination of genotype information from two individuals, by "mixing and matching"

parts of their genetic code.  This is a powerful approach to creation -- after all, it appears

to have gotten us to where we are today, as intelligent sentient beings.

Richard Dawkins popularized the genetic approach in his book "The Blind

Watchmaker". [28]  Several artists are using genetic algorithms to create striking works

(though they are not representational, in the sense that I am using here).  Karl Sims

creates wonderful abstract images very rapidly with his genetic software, running on a

massively parallel supercomputer. [137,138]  My own experience with his program

showed it be an astonishingly fecund process.  And it as simple as can be: the computer

puts up a sequence of images, you pick one you like which the computer proceeds to

mutate for you, or you pick two which the computer then "breeds" for your pleasure.

Mutation is random, and "natural" and sexual selection are performed by you, the user.

William Latham also uses genetic methods in creating his fantastic sculptural forms of

Cambrian beasts-that-never were. [151]
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While this genetic approach to the management of procedural models is incredibly

promising, it is currently limited to the creation of such free-form objects and images as

Latham's and Sims'.  It is, unfortunately, not immediately apparent how to apply these

methods of selection and random mutation to non-biological natural phenomena.

9.8.  What the Process Is Not

To further distinguish the process, it is worthwhile to point out certain aspects of what

the process is not, to clarify by defining the negative space around it.

9.8.1.  A 2-D Canvas

One thing this process is not, is a flat canvas.  While the final image is indeed two

dimensional, its creation takes place in 3-D.  We are responsible for the creation of an

entire three dimensional world, which we proceed to image by projecting it onto a film

plane like a photographer, only doing so with mathematics.*  The potential of the process

will be expanded when we gain the capability of rendering scenes at video frame rates --

then the viewer will no longer need be passive, but will be able to enter the synthetic

world and explore it, as one moves about to inspect a piece of sculpture.  In an immersive

VR environment, this is foreseen to be quite an exciting development, though more akin

to entertainment than art perhaps.

It is important to me, as an artist, to emphasize a certain point: The really interesting

uses of the computer in the creation of artworks will not be in the traditional role of a

canvas and paintbrush.  Certainly, the computer can function as such and offers some

unique capabilities, such as infinite erasure and reworking capabilities, not possible with

* Because the projection is described in the abstract, with mathematics, we may employ projections which
would be difficult to impossible to obtain with a camera (see Appendix B and Plate 8.1 for an example).
Indeed the projections may be completely non-intuitive, as for example with the projection of a four-
dimensional quaternion Julia set down into three dimensions, and subsequently down to the two dimensions
of the image plane. [92]
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paints.  But that does not mark a significant conceptual breakthrough, merely incremental

progress for an established process.  Not that there is anything wrong with using the

computer in this way -- most of the best computer art has been, and will continue to be,

produced in this way.  I simply wish to emphasize that the process I am describing has

very little in common with that, aside from their common aesthetic disciplines of

composition, color usage, and so forth.  The means of creation are utterly different, and it

is only the new one which is truly significant as an intellectual event in the history of art.

9.8.2.  Local Control

Almost every established process in the visual arts involves local control.  Details will

be manipulated in isolation from the whole.  Any given brush stroke, for instance, while

it certainly may indirectly affect and be indirectly affected by its global context,

represents an absolutely local act.  It does not directly affect anything beyond the area

where the paint is applied.

Changing a global parameter, in contrast, immediately and directly affects everything,

everywhere its function has influence.  Thus I again wish to emphasize the contrast with,

for instance, painting and sculpture, where the work is usually realized incrementally by a

series of fundamentally local actions.  When working with global control only, we have a

much less precise control over details, but gain in return something akin to the power of

"painting with a broad brush" -- we can cover a lot of territory with a single action.

9.8.3.  "Of the Hand"

As the only access to expression is through the formal logic of the computer program,

there is no "evidence of the hand" in the final work (or if there appears to be, it is

illusory).  Some may find this anathema, but it is important to point it out as a distinction

of the process.  The mechanism of creation that I use, is extraordinarily abstract and

removed from the product.  This is part of what is interesting and bizarre about the
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process: that such prosaic imagery comes about through such indirection and abstraction.

I claim that this is significant.

9.8.4.  Pure Mathematics

I am often mistaken for a mathematician.  That I am not.  While all of the models

employed are based on logic, and many are mathematical models of natural phenomena,

the mathematics I employ is generally quite simple compared to what a "real" research

mathematician would be involved with.

Pure mathematics, after all, usually shuns applications or associations with "reality".

And what I am up to, is recreating reality as we know it (more or less).

9.8.5.  Computer as Creator

Finally, and most importantly, this process does not represent creative action by the

computer.  A computer, given no instructions, will just sit there dumb as a rock, if a little

warmer.  A computer (on a good day) will cheerfully do exactly what you tell it to do,

with blinding speed and precision.  It will never do anything useful that you, the operator,

did not describe explicitly and in excruciating detail.  Remember: the computer operates

as a formal system, and that admits no ambiguity and no choice, only deterministic cut-

and-dried yes-or-no instructions and conditionals.  Certainly, the complexity of the

instructions we hand the computer rapidly surpasses our human ability to track every

detail thereof, while the computer never loses track of one iota.  But the computer

remains a simpleton; a very fast and capable simpleton, but a simpleton nevertheless.  If

we puny humans were given eons and inhuman patience, we could track, produce, and

reproduce every tiny detail of what the computer does -- only we'd make a lot more

mistakes along the way.
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The point is, the computer acts as a powerful tool, maybe even like a semi-intelligent

slave/apprentice in practice, but is in no way the creator, the author of the product.  It

simply did as it was manipulated to do, as with a paintbrush in the hand of a painter.  The

main difference is that the form of the manipulation is highly abstract and rigorous, and

very different than the physical manipulation of tangible media that we are more familiar

with in the visual arts.

9.9.  The Process in Action

How does one proceed to create an image through this process?  First, we have to

posit our model of the world; next we must map it into a formal system, a computer

program.  Then we devise axioms, or input to the program.  Lastly, we run the program to

create the output which we will interpret as an image.  This output is, like the input, in the

form of a string of symbols or values (i.e., numbers; ones and zeros).  A string is hardly

an image; therefore we call this the metarepresentation  of the image.  This

metarepresentation still requires considerable, sophisticated machinery and methodology

of interpretation, translate it into the intended image.

We can then further subdivide the process of creation into two separate undertakings:

creating the metarepresentation and interpreting it.  This essay concerns itself primarily

with the first; it is here that the bulk of the intellectual content resides.  The second

represents primarily an engineering problem, though there is a considerable dose of color

science involved and that is none too simple in itself. [163]  In artistic terms, these two

parts correspond to process and medium: the first concerns itself with the machinations of

artistic creation while the second is about producing a physical representation.  After the

first part is done, all we have generated is some still highly-abstract and intangible form.

It is the second step which maps this abstraction into something which can be perceived

in a sensible way, and maybe even felt, held, or hung on a wall.  It is interesting that the

two, process and medium, are so neatly partitioned in this way of working.
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9.9.1.  Creating a Metarepresentation

Again, the first step is to create the metarepresentation: the theorem, the string, the

sequence of digits, the one huge number, the signature on a magnetic or optical storage

medium, or the image file; however you care to view it.

9.9.1.1.  Creating the Formal System

We begin the process unconsciously as a young child: observing and cataloging

sights, phenomena, and behaviors in Nature.  Over time we build some potent and

internally-consistent models of Nature and the behavior and visual manifestation of

phenomena there: clouds, mountains, water, light and color, to name but a few.  Some

training in the sciences teaches us the practice of mapping this intuition into formal,

mathematical models of the behavior of natural systems.  We become familiar with many

such formal models that scientists before us have devised and refined, and we learn where

to find descriptions of such models -- in the scientific literature.  Becoming a practitioner

of computer graphics, we learn the practice of mapping such models into formal systems

which the computer can efficiently use to generate pictures.  (Note I say "efficiently", as

the scientific literature consists mainly of picayune and non-general models, along with

some very elegant and general ones which are simply not suited to the practice of image

synthesis: witness the wave model of light.  This is a potent, elegant model of Nature

which the computer just can't deal with, as it involves too much complex calculation.

What we require are models with potent descriptive capabilities, and which admit to

reasonable computational implementations.)

It is this formulation of a model of Nature and mapping it into a computer program

which constitutes the first phase of the process.  It is in the creation of the functions, the

writing of the program, that we create the parameters and give them their functional

"meaning".  The program, again, represents the rules of production in the formal system,
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which will be repeatedly applied to the axioms, or the input, in the process of deriving the

theorem that is the result or metarepresentation.

Our tools at this stage are such abstractions as shaping functions such as polynomials

with continuity in a desired number of derivatives, logic in the form of conditional

"if/then" statements, and algebra as applied to color (more on that later).  Largely by

combination and recombination of a series of standard building blocks, such as fractal

functions, bump maps, color maps, etc., we construct a relatively small set of functions

which we intend to use for creation of the image.

The process of generating the formal system is so involving that, in practice, almost

all of my own images have come about as verifications of some abstract idea which I was

attempting to map into such a system.  In this sense they represent illustration of the

model being developed; I use the word "illustration" deliberately, despite the stigma

which may be attached to it in the visual arts.  Keep in mind that in our new paradigm,

representationalism is no longer a "pedestrian concern" -- it is once again an unsolved

problem, and we are working towards solving it.  Thus the work cannot be dismissed as

"mere illustration" or "simply representational"; these are honorable labels in our context.

There is one inevitable and undesirable side effect of this stage of the process:

parameter proliferation.  In the process of developing a potent model of complex

phenomena, we almost always end up introducing a large number of parameters which

control the behavior of our models or functions.  This means that the artist will be faced

with a bewildering array of values which must be assigned, to create an image, and

refined, to create an artwork.  Again, we currently know of no way around this time, but

that may just be a symptom of the youth of the endeavor.
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9.9.1.2.  Generating Axioms

The next step is to formulate values for those multifarious parameters.  This is not

quite as bleak a prospect as it may sound, as the same intuition which drove the

formulation of the model and the functions, also informs the choice of values for the

parameters.  Thus we are not groping in complete darkness; we generally have a good

idea of where to start and how to change the values, to obtain the desired effects.

Nevertheless, as described before, this is a long and tedious process in practice.  The

goal is the creation of an input file which will be fed to the program when we execute it to

create an image.  The process consists of sitting at a terminal, working in a text editor to

change the strings in the input file, running the program with the modified file, inspecting

the results, going back into the editor to make changes, running again, and so forth.  I

generally spend the equivalent of about two to six weeks of full time work in this loop,

for one of my finished images.

But it is important to note that the procedure isn't quite as neat and sequential as I've

presented it so far.  These first two stages are not really so distinct -- while I am refining

the parameters to the functions, I am generally simultaneously developing and extending

the functions themselves.  Since the theorem proved is determined by both the axioms

and the rules of production, we naturally massage both of them more or less

simultaneously as we develop that theorem into the image we desire.  Furthermore, as

even the author of the formal system would not generally care to be confronted with the

need to specify every single parametric value in the model, many of the axiomatic values

are hard-coded as constants in the program and thus are not part of the input file.  Thus

the separation of axioms into input and rules of production into program, is not very

precise.  It would actually be easy to be very thorough about so partitioning the system,

but in practice it is neither necessary nor desirable.
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9.9.1.3.  Deriving the Theorem

Once we have a set of production rules and axioms we may proceed to derive a

theorem, to create a image.  Again, this means firing up the program and running it with

the given input file.  Execution time for the program varies widely for my own images,

from a minimum of about a minute to a maximum of several days.  This at a rate of tens

of millions of operations per second* -- there are obviously many, many steps in the

derivation of the theorem, far more than any human being could ever hope to perform.

Again, each of these operations (other than memory accesses) represents a

transformation to a string: one sequence of ones and zeros is translated, deterministically,

into another.  The sum total transformation is that of translating the input file into an

image, an image which may represent self-expression in an artwork to the person

executing the program.

9.9.1.4.  The Loop of Scientific Discovery

Gregory Nielson points out [110] that this process embodies the basic loop of

scientific discovery: one posits a formal model, observes the behavior of the model in

comparison to Nature, then refines the model and makes further observations, proceeding

in an iterative loop.  Perhaps the main difference between mainstream science and this

practice in computer graphics, is the time required for a single iteration of the loop.  For a

scientist, it may be decades, even a lifetime or longer, whereas in computer graphics it is

typically measured in minutes.

* I almost always perform my computations in parallel on several computers, each of which is capable of
performing several million operations per second.
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9.9.1.5.  The Role of Intuition

Both the scientist and the artist are driven by intuition.  No scientist derives potent

models of Nature through exhaustive search of all the possibilities provided by first

principles.  Neither does any mathematician originally get to the proof a hard theorem by

simple extrapolation of logical principles.  No, they both will retrofit their conclusions

with a deterministic logical derivation -- those deterministic formalisms are what both

mathematics and the physical sciences are founded upon, after all.  But if not for the role

of intuition, computers would immediately leave us all in the dust, so to speak.  It turns

out that, ultimate expositions in deterministic proof notwithstanding, no mathematician

can explain exactly how he or she originally conjectured the result, or even how they

arrived at the formal derivation finally presented.  If they could, we could program a

computer to do it faster.  No, in the creative process scientists, mathematicians, and artists

all rely on intuition to the same degree and in exactly the same way.  It is in aspects of

their respective products that they so differ.  None of us knows precisely how to get

where we want to go a priori, but we all conjecture worthwhile goals and eventually

intuit some path that indeed gets us to our desired ends.  Such is the magic of human

intelligence, and this is what continues to distinguish us from any "artificial intelligence"

yet devised.

9.9.1.6.  The Role of Serendipity

Finally, we must note the role of serendipity in this formal process.  The fact is, we

don't always know exactly what the results of our derivations will be, and we can't

realistically expect to always be able to accurately foresee the behavior of our models (the

emerging science of chaos is making that abundantly clear).

Serendipity comes from the unforeseeable, as with random models; from the

unforeseen, as with a model which has not yet been subjected to thorough intellectual
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scrutiny; and from errors and mistakes, as with typos and program bugs.  Each of these

factors has played an important role in the genesis of my own images.  Plate 9.1, for

example, did not come from a preconceived idea for a visual composition.  Rather it came

from the unforeseen, or a sort of bug: I had moved the program which I expected to

generate the mountains seen in Plate 1.2, to another computer.  This computer had a

different random number generator, which I had not foreseen in writing and porting my

program.  Thus when I ran the program I was confronted with a wholly unexpected

landscape, which serendipitously harmonized with the large moon I had put in the sky,

but not yet scaled own to a reasonable size.  Perhaps every artist can tell similar tales, but

here it is important to see that, though we work through a formal, deterministic process,

we still dance with chance and the unknown.

9.9.2.  Interpreting the Metarepresentation

As I said before, the theorem we derive is nothing more than a string of symbols in

the computer's memory.  Nothing tangible or image-like about that, yet.  But we do

intend an image, and we have (thankfully) a preexisting machinery of interpretation for

that metarepresentation.  I will outline that machinery, and sketch how that machinery is

currently woefully inadequate to the creation of works of art.  This, too, is a symptom of

immaturity of the process and medium, and will change for the better with time.

The problem at hand is to map the formal metarepresentation, i.e., the string or

numbers, to a certain appearance in a physical manifestation.  Obviously, we have

enormous latitude in this transformation, as the metarepresentation has no intrinsic

meaning: it is merely the deterministic result of applying a series of abstract

transformations to some input symbols; there is no meaning in that other than what we

(more or less arbitrarily) ascribe to it.  Also obviously, we always had a certain

interpretation in mind for the result, throughout the process.
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Unfortunately, when we leave the idealized, uncertainty-free world of formal logic

and its embodiment in the computer an enter the "meat" world of physical manifestations,

we lose the grace and precision of Boolean digital representation and enter the fickle,

imprecise, and heinously ill-defined world of things analog and continuous.  The real,

"analog" world is far less well-behaved than the formal and deterministic world in which

have been dwelling.  We face a whole new, different, and largely unrelated set of

problems, problems usually without the clean, irrefutable solutions we've been using.

This is the world of color monitors, color printers, and photographic reproduction.  This

is where we do well to hand our theorem over to the artisans skilled in working with such

things, and beg, cajole, plead with and threaten them to do our bidding.

Such is the Real World, with which our abstract idealizations must eventually

interface.

9.9.2.1.  Numbers as Colors

We have a huge string, usually of hundreds of millions of symbols, or megabytes of

data, which we wish to interpret as a picture.  "How?" one might ask.  Well, again

fortunately, there are conventions for this interpretation which we can follow to make our

lives easier.

The main convention is to regard the string as a sequence of numbers, usually

comprised of eight 0/1 symbols or digits each.  Such an eight-bit string can, again by

convention, encode a single number between 0 and 255, inclusive (those 256 values

correspond to the 28  possible distinct combinations of eight ones and zeros).  According

to the tristimulus model of human vision, we can encode all perceptible colors into

combinations of exactly three primary colors. [70]  By convention, we interpret our string

of eight-bit numbers to represent consecutive triples of values for those primary colors.

Thus we know what the derived string "means": it is a sequence of color values for pixels
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(pixels being the atomic colored dots of which our final image is composed).  These color

values proceeding a canonical order, as do the pixels they are meant to represent.  (There

is a wide variety of standard digital image file formats, such as GIF, TIFF, JPEG, etc., but

they all simply represent different encodings of the same information.)

This is an arbitrary interpretation, but then so is any interpretation of an intrinsically

meaningless formalism.  By being as specific as we can be about the intended meaning of

the metarepresentation, we take on another arbitrary set of constraints that greatly

simplify our task.

9.9.2.2.  The Finite Number of Possible Outcomes

As each pixel is represented by three eight-bit numbers, it can have exactly one of

28 x 28 x 28 ≈ 16 million values.  If we have, say, 210 ≈ 1 million pixels in the image, then

the entire image can take on exactly one of 2810

values.  While 2810

 is one very large

number, it is finite.  Thus, at a given number of pixels and a given number of possible

colors, there is a large but finite number of pictures which can be represented.  The actual

number will be far less than 2810

, of course, as no human observer would be able to

discriminate between the different visual representations of many slightly different

metarepresentations.

9.9.2.3.  Additive vs. Subtractive Color

Another factor which distinguishes working with the computer from most of visual

media, is that we work in an additive color space, versus the more familiar subtractive

colors.  The difference is that when using pigments, on is subtracting color energy out of

the impinging light which illuminates the work.  If there is no illumination there is no

visible work, and presumably the optimum illumination is with white light, as it contains

all the colors, in equal proportions, to start with.  Thus a red pigment absorbs the green

and blue energy in a white illuminant, and reflects the red.
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In computer graphics, we start with a dark (optimally, black) surface, and add in the

color energy we desire.  Thus a red area is simply made to emit red light, and the work is

visible in complete darkness (and conversely, may be hard to see well in a brightly lit

environment).  This convention came about because the standard output device for

computer graphics is a television monitor, as opposed to a sheet of paper.

The main difference between additive and subtractive color, is that the primary colors

are complementary.  In subtractive color (contrary to what you were taught in grade

school), the primaries are magenta, yellow and cyan.  In additive color, they are red,

green, and blue.  Thus, for instance, we must learn to think of yellow as a sum of red and

green (not immediately obvious), and brown as a dim version of an orange yellow.

We also find that images developed on the luminous monitor may not be nearly so

striking, when mapped to a subtractive medium.  Plate 9.1 is one of the few examples in

my own experience, that looks fairly good in both media -- though there is a magical

luminous quality on the monitor, which is missing in a reflective print.

There is a hard-copy solution to this: back-lit transparencies.  Unfortunately, these are

quite expensive to produce; the light box alone can cost several hundred dollars (and be

ugly to boot) for good-sized print.  Back-lit transparencies to have one significant

advantage over reflective prints, however: the lack of surface detail, such as the impasto

of a painting, is obscured as one's attention is simply not naturally drawn to the physical

surface in such a display.

9.9.2.4.  Archival Reproduction

Color reproduction from digital data is a difficult problem.  It seems unlikely that a

television monitor would be accepted as an artwork, by the art consuming public.

Monitors are large, heavy, low-resolution, and, well, they look a big TV, not something

to hang on your wall.  The market is, and will remain for some time to come, for (thin)
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two-dimensional images on a surface, like a painting or a print; not for a four-inch-deep,

ungainly light box with a dangling power cord to be plugged in somewhere, and certainly

not for an expensive, high-quality video monitor.

Thus we face the problem of making high-quality reflective prints of the artworks,

which both the artist and the collector can be happy with.  Achieving the artist's

satisfaction requires a large investment of time and money on the his or her part, to find a

photographic or offset printer to produce such prints (there are currently no other viable

high-quality, large format color printing media).  The artist can expect to spend several

thousand dollars on this, and what is produced is not generally a one-of-kind object, but a

series of prints.  This affects the market for the work; it is not like a painting, but more

like a lithograph or photographic print series.

The second criterion, making the collector happy, complicates the reproduction

problem further.  Serious collectors require archival artworks -- pieces which can be

expected to last 100 years, without serious fading or other such degradation.  This rules

out color photographic prints, as none are considered archival (gloss Cibachrome prints

are considered to be semi-archival, i.e., they may last about 50 years; no backlit

transparency even comes close, due to the high, UV-rich light levels in a light box).

What this leaves, then, is four-color offset printing.  Such prints can be made on acid-free

paper, or at very high (400 dpi) line screen resolution using carbon pigments on a

polyester substrate.  The former is the equivalent of a quality lithographic print; the latter

is superarchival, with a life expectancy of about 500 years, but is very expensive and

constrained to modest sizes.

These problems mean, in practice, that color reproduction is largely an unsolved

problem.  It is not realistic to expect the artist to be able to sink several thousand dollars

into each finished work, as artists are notoriously indigent.  Thus I, for one, consider

myself to be an artist without a product.
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9.9.2.5.  What is the Product?

Given that there were a product, this raises the well-known question in computer art:

what exactly is the "product"?  Is it an object, such as a color print?  Is it the

metarepresentation, the image data?  Is it the formal system?  Or is it the formal system

plus its machinery of interpretation, i.e., the program and the computer that runs it?

Of all of these possibilities, the only reasonable one is the first: it is some tangible

hard-copy object or print.  The metarepresentation is not particularly valuable, as it is

exactly reproducible, due to the determinism of the process which creates it.  It cannot be

the formal system -- I have years invested in the program that creates all of my images; I

would not sell it for any price.  And even if I did, I am capable, in principle at least, of

recreating an exactly equivalent formal system, and indeed upon a sale of this sort I

would immediately have to do my best to do something very much like that, just to be

able to get back to work.  This would lead to disgruntlement among the collectors of my

work, no doubt.  Finally, it is absurd to propose the last option, that the work consists of

both the program and the computers that run it: even if I were to give the software away

for free, the hardware would cost well over $100,000 and would serve no purpose

whatsoever to the collector, as it is exactly replaceable by me.  That is, it has absolutely

no uniqueness associated with the image -- it would be like selling the paintbrushes and

easel with a painting; they are generally quite replaceable and of no relevance to the

finished piece.

9.10.  Discussion

Let me move now to a brief discussion of the implications of this new process.
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9.10.1.  What Role Intent and Understanding?

As I have pointed out, the computer can be quite readily be used as a novel canvas,

paint, and paintbrush, for use as with prior two-dimensional media for the visual arts.

Used that way, the resulting works will be essentially "of the hand", and thus part of the

existing continuum of two dimensional media.

When the artwork is algorithmic, issuing directly and unmodified from a formal

description, it becomes more interesting.  When the algorithm is deterministic, it becomes

more interesting still (after all, artists such as Sol Lewitt have produced non-deterministic

algorithmic artworks, and issued the algorithms therefore, for some time now).

But I maintain that deterministic algorithmic artwork is only truly significant when

the artist is also the author of the formal system, and can claim to understand it

thoroughly and to have intended (modulo serendipity) to create the result produced.  Thus

artworks created by someone else using my software would lack the conceptual

significance, even if they were more aesthetically sophisticated.  If Picasso had invented a

"Picasso engine", and others used it to create Picasso-like works, these works would

simply would not be quite the same as an original Picasso, after all -- even if others were

able to "improve upon" Picasso.

The artist can only really claim to have accomplished self-expression through formal

logic, when he or she authored, for that specific purpose, the formal system through

which the expression is obtained.

9.10.2.  What of Turnkey Systems?

What then, of turnkey software for creating computer art?  There are many powerful

programs becoming available which unlock the substantial potential of the digital

medium, and there will continue to be ever more, of greater sophistication and novelty.
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Programs such as Adobe Illustrator and Photoshop are revolutionizing the way many

artists, and perhaps most designers, work.

There is, and will always be, a role for such systems.  Indeed, the vast majority of

practicing "computer artists" will always use such "canned", preexisting software.  It

would be absurd to propose that all, or even many, artists pay the substantial dues

required to get up to speed in this peculiar process I am describing.  No, this process will

always exist and be practiced on the fringes -- there will never be more than a handful of

people who are qualified to use this process, requiring as it does an extensive background

in art, science, mathematics, logic, and computers.

Let me use an analogy: there have been great drivers, for almost as long as there have

been cars.  But these drivers are rarely the builders of the cars they drive.  Indeed, no

single person can expect to build an automobile of any sort, much less a race car, without

the help of many others (no more can I expect to build the computers I use, or to have

invented every technique I apply).  But a good driver, whose vehicle is largely the result

of his own creative vision, would always be a special competitor, though he might never

turn in the fastest time.

There will always be room for the virtuoso users of tools provided by others, and they

will always predominate the field of performers.  Likewise, there will always arise, here

and there, now and again, visionaries with "the madness of the poet" who will create their

own tools and do with them what might never have occurred to others.  And there is, at

least, always some significance to being the first do have done something of interest and

significant difficulty.  This process I describe is probably such an undertaking.

9.10.3.  The Role of Traditional Media

New as it may be, it does not stand outside of precedence.  As the result is a two-

dimensional work, all the rules and discipline of two dimensional art apply, most saliently
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those of visual composition and color usage.  As the modelling is done in three

dimensions, rules of form and lighting also apply.  When animation is undertaken, the

rules of cinematography will come into play.  When we produce a tangible product, any

sort of physical manifestation, all the rules and practice of the medium in which that

product is executed will apply.  We cannot presume to create a new art form from

scratch; we will need to borrow and appropriate everything we can use, from what has

come before.

We may, however, need to invent a viable new medium in which to represent the

product.  It may be that computer art as a whole will not truly come into its own, until

some essentially new display technology, such as large, bright, flat-panel color displays

or laser projectors, comes into common usage.

9.10.4.  Mastering the Process and Medium

As painting has been mastered, so must the computer media and this new process.

Painting, photography and sculpture did not reach maturity overnight; neither can we

expect computer art to do so.  The fact is, the computer artwork has not yet been

produced which could stand a side-by-side comparison with, say, a van Gogh painting.

My own best image would pale, stood beside a Bierstadt.  The austere beauty of the

underlying formalism strips computer generated imagery of the fascinating, continuous

behavior of such a medium as oil paint -- there is simply nowhere near the amount of

information in a standard digital image file, as there is in a well-executed painting.  The

range of scales over which a good painting is interesting, is generally much larger than

that for a computer-generated image, fractals notwithstanding.  We will need to include

such complexity, or simply find another grounds for legitimacy with as much weight,

before we can call our works truly fine art.
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One interesting and useful distinction was drawn by Ansel Adams, who used the

analogy that the negative is the score, and the print the performance.  In this analogy, we

currently have the capability in this new process to produce the negative, almost literally.

But we currently lack the means of translating this score into an impressive performance.

That is the challenge I have outlined above.

One wonderful distinction of the process I've presented, is its simultaneous use of

both analytic and intuitive thinking.   Sitting at the computer creating an image, one must

rapidly switch back and forth between the "right brain" mental faculties required to assess

aesthetic issues, and the "left brain" analytic processes required to deal with the logic-

based machinery of production.  This is certainly an unusual way to go about producing a

visual artwork; its closest analogue may be in musical composition.

9.11.  Conclusions

This new process may mark a truly novel event in the history of creative process in

the fine arts.  Provided, of course, that the artist intends, understands, and can in some

valid sense take responsibility for, the formalisms behind the product.  I am claiming that

a number, along with the correct (and well-defined) interpretation can represent artistic

self-expression, that this number can be derived deterministically, and that the machinery

of this derivation adds significance to the result.

Be careful to note that I am not claiming that the machine is self-expressing.  A

computer has no more aesthetic ability than any inanimate object, and indeed, it can be

more refractory than most.  The expression is the human artist's; the computer is the tool

through which the artist makes his or her statement.

Editorially, I wish to add that it is fortunate that landscapes are my prediction for self-

expression.  As an painter and photographer, I have always preferred to render

landscapes.  When I entered the field of computer graphics research, landscape modelling
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and rendering were in their infancy; it has been my pleasure to substantially improve the

state of the art in such, through the course of my doctoral research at Yale under Benoit

Mandelbrot, the father of fractal geometry.  In a remarkable bit of serendipity, I appear to

have been the right person in the right place at the right time.  There was a narrow

temporal opportunity, which I happened to precisely meet-- had I shown up a few years

earlier or later, the opportunity would not have existed.

9.11.1.  Constraints and Opportunities

Let me quickly recap the significant constraints and opportunities of this new process,

as I see them.

9.11.1.1.  Working in Three Dimensions

While sculptors and stage designers have worked in three dimensions for millennia,

the peculiar way in which we do is significantly different.  We differ at least in scale: we

are creating landscapes, entire planets, and even, potentially, a small synthetic universe.

The challenges are different, and appropriate practice will therefore undoubtedly be

different.  Thus we will need to invent and refine some new methodologies.  While

landscape rendering has as rich a precedence as any other area of visual art, prior

landscape artists were not generally responsible for creating their entire scene, in full

three dimensions.  Soon, when interactive exploration of our scenes becomes possible, we

may find ourselves confronted with responsibility for guiding, through whatever means

we find artful, the explorations of visitors to our worlds.

9.11.1.2.  Algebraic Color

While we cannot and should not expect to redefine the rules of color usage, we cannot

manipulate color in the ways which visual artists are accustomed.  First, we work in the

unfamiliar additive color space, where heuristics for mixing colored pigments are either
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inverted or simply invalidated.  Second, there is no physical system in which color

interacts -- it is all simply a model.  Nothing happens at all, except for what we specify.

We may seek to have those specifications mimic as closely as possible, the behavior of

the real world (a very hard thing to do, in general), or we may bend or break such laws in

our system.  In any case, the specification and interactions of colors on surfaces is

couched in the mathematical language of algebra -- certainly an unfamiliar way of

dealing with color for the average studio artist.  Colors are all numbers; they mix by the

arithmetic operations of addition, subtraction, and multiplication, and they are often

modulated by exponential operators.

Color theory for computer graphics is often elegant, and is quite internally-consistent.

But it is not something familiar to the average artist.

9.11.1.3.  Proceduralism

Proceduralism, the practice of encoding behaviors in formally defined, deterministic

functions, is at the very heart of this process.  Strict adherence to this practice is whence

the intellectual significance we claim for the process emanates.  We can gain a wonderful

elegance in this approach, as with the fractal models which can so succinctly describe

behavior of potentially unlimited visual complexity.  It marks a significant challenge, to

maintain a discipline of using only such relatively simple logical constructs for visual

expression, and it is a significant constraint to work only with global parametric control.

There can come great benefits from such discipline, though.  Imagine a procedurally

defined planet, or array of planets, which possesses detail everywhere, detail which the

artist did not explicitly and laborious specify, but which issues directly and automatically

from the functions from which the model is composed.  Plate 4.3 is an example of such a

model; the animation "Spirit of Gaea" currently in production, will serve as a proof of this

concept.  In this animation, the point of view will move in from deep space, up to the
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planet, down through its atmosphere to its landscape, up very close to the terrain (the

equivalent of about ten feet away), then back out into space.  This will all be

accomplished with a single procedural model, and while rendering will be far from real-

time, it is only a matter of engineering to get to where we can move around like that

interactively, at will.  That will be an unprecedented development.

9.11.1.4.  Formal Logic

Our use of formal logic for self-expression entrains with it the precision and lack of

ambiguity of mathematics and science.  Lack of ambiguity is not familiar, or even

desirable, in the arts.  But such precision in the creative process does not in any way

preclude the kind of deliberate ambiguity which lends depth and interest to art.  Rather, it

stands beneath, as an unusually solid foundation for artistic creation.  Its use allows

scientific models to mapped into creative opportunities -- something which I personally

find an exciting undertaking, having always been fascinated with the beauty of such

models in their own right.  Finally, our basis in formal logic entrains with it, the

intellectual depth of the philosophical discipline of logic and the mathematical models of

the sciences.  These are deep conceptual roots, which we have only begun to tap.

9.11.2.  Some parting Questions

I will conclude with some questions, questions which do admit to immediate answer.

How do we obtain self-expression through formal logic?

I claim to have done so, but I can no more tell you how, than the average painter can

tell you precisely how they painted a particular painting.

How do we know when we have?
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If my claim is valid, it should be verifiable.  There are only two ways to do this: ask

the artist, and ask yourselves, the audience.  Success or failure will be found to be a fickle

thing.

So what's new here?

I have attempted to illuminate that in this essay, but I feel very incomplete about it.  It

seems that my own analysis of this event preliminary; I may spend the rest of my days

fleshing it out.  I have this feeling that, as is typical in new areas of intellectual inquiry,

the ideas formulated and presented so far may be vague and somewhat half-baked.

Certainly my own arguments could stand a better foundation in the history of art.  But I

hope it that the time is ripe to begin to expound them, that they might be honed or

discredited through the dialectic.

Is it important?

Time, of course, will tell, at least in the eyes of our culture.  Obviously, I think so.

But then, I am primarily trained as a scientist rather than as an artist, and I am certainly

no art historian.  Nevertheless, I do know enough to recognize and put my professional

reputation at stake, that something big is going on here.  Unfortunately, the requirements

for a full appreciation are backgrounds in mathematical logic, natural sciences, and

computer science, as well as aesthetic training and sensitivity.  Thus the audience who

can apprehend, and perhaps be impressed by, these arguments is necessarily small.

Will it fly?

Again, time will tell.  If I continue to suffer occasional visual inspiration, I may help

bring it to maturity as an art form.  I am certainly counting on others to help, and

hopefully to create works which will make my own appear crude and preliminary.  But I

am not alone.  I quote my colleague Judson Rosebush [126]:
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In practice, proceduralist computer art is among the most contemporary products
of our culture, and will increasingly be appreciated as a major art movement by
this and future generations.

If Mr. Rosebush and I are correct, we may be witnessing one of the truly definitive events

in the history of Art.
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Appendix D.  Essay: Mathematics -- the Language of
Nature

10.1.  Introduction

This appendix consists of an essay written for, and appearing on the inside cover of,

the 1993 Fractals Calendar [92] which I produced during the spring and summer of 1992.

The target audience is the interested, but uninformed, layperson.  The content is therefore

expository rather than technical; its scope goes as far as original philosophical

speculation.

This essay derives its basic structure, and even some of its content (specifically, the

quote of Galileo and the numbers for fractal dimensions) directly from the similar essay

by Richard Voss in the previous year's Fractal Calendar. [153]  Much thanks is due to Dr.

Voss for paving the way so smoothly for this essay and, indeed, the entire 1993 calendar

project.

10.2.  Mathematics: the Language of Nature

A basic tenet of Western science is that the behavior of systems in nature can be

accurately described with mathematics.  In 1623 Galileo wrote:
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Philosophy is written in this grand book -- I mean universe -- which stands
continuously open to our gaze, but it cannot be understood unless one first learns
to comprehend the language in which it is written.  It is written in the language
of mathematics, and its characters are triangles, circles, and other geometrical
figures, without which it is humanly impossible to understand a single word of
it; without these, one is wandering about in a dark labyrinth.

Scientists today still regard this statement as essentially correct.  However, Galileo's

language of nature -- that attributed to Euclid of ancient Greece, and known today as

Euclidean geometry -- was a bit short in vocabulary.  Geometry is a language of shapes,

but many of the shapes in nature lie in Galileo's vague category of "other geometrical

figures", not within the scope of Euclid's shapes.  They require another kind of geometry,

one unimagined in Euclid's or Galileo's time.

Recently the mathematician and natural philosopher Benoit Mandelbrot observed:

"clouds are not spheres, mountains are not cones, coastlines are not circles, and
bark is not smooth, nor does lightning travel in a straight line..."

This observation heralded his introduction in 1975 of the new branch of mathematics

known as fractal geometry.

Fractal geometry can be thought of as a new dialect of the mathematical language of

shapes (geometry).  Unlike Euclidean geometry, fractal geometry deals with the very

complex shapes found in nature: things like trees, river networks, and billows of smoke.

The difference between Euclidean shapes, such as planes, spheres and cones, and fractal

shapes is that Euclidean shapes are all locally flat: if you look at them closely enough,

they become flat, planar, and boring, while fractal shapes can be complex at every scale,

that is, they may possess an infinite wealth of detail.

Where does this complexity come from?  It could come from two places: there could

be a vast quantity of essentially independent information -- such as the nicks, scratches

and stains on an old pair of tennis shoes -- or there could simply be a repetition of an

underlying form, at a variety of scales.  The latter type of complexity is the secret of
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fractal geometry: self-similarity, or the repetition of form over a variety of scales.  Note

that the former kind of complexity is hard to conceive of except as the result of an

accumulated history of independent events over a substantial period of time, while the

latter -- fractal complexity -- can often be succinctly described by a simple specification

of the underlying shape, plus the relation of its manifestation to the scale at which it is

manifest.

Many forms in nature are a combination of both types of complexity; the addition of

the fractal vocabulary of shape to our scientific language of nature has revolutionized our

ability to describe, in the internally-consistent, formal and deterministic language of

mathematics, the forms and order we find in nature.  The images in this calendar --

particularly the fractal "forgeries" of natural scenes -- attest to the success of fractal

geometry as a language of nature.  Even the wholly abstract fractal images have a

"natural" feel to them;  they echo the complexity of form so common in nature.

It is interesting to contrast the places where we find Euclidean versus fractal shapes:

Except for the near-perfect spheres and ellipses of soap bubbles, astronomical bodies

(planets and suns) and their orbits, it is a bit unusual to find Euclidean shapes in nature --

they generally appear in the domain of man-made objects, such as buildings and

machines.  Fractal objects are generally too complex to be explicitly constructed by man;

nature, on the other hand is full of them: mountains, trees, clouds, and fractures (indeed,

the word "fractal" intentionally shares the Latin root of "fracture"), to name but a few.

Hence it is appropriate to think of fractal geometry as a "geometry of nature".

Some artificially-generated fractal shapes appear to imitate phenomena in nature such

as mountains, clouds and trees.  Others appear regular and man-made, such as the

Sierpinski Gasket and the von Koch Snowflake.  Yet others, such as the Mandelbrot and

Julia sets, appear to be entirely abstract in form.  Yet all fractals share the characteristic of

self-similarity: they appear more or less the same at a variety of scales.  This self-
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similarity may be exact, as in the case of the Sierpinski Gasket and the Menger Sponge; it

may be statistical, as in the case of fractal mountains; or it may be more difficult to

characterize, as with the Mandelbrot set.  Although the character of the self-similarity

differs among fractals, they all have in common the fact that when you look at them ever

more closely, you see more of the same, and they all have in common a potentially-

unlimited complexity which is a result of this repetition of form over a potentially-

unlimited range of scales.

Fractals also share a common mathematical characteristic: the fractal dimension.

The fractal dimension is an analytic measure of the "wigglyness" of a fractal line or the

"roughness" of a fractal surface.  It is a number which agrees with our everyday sense of

dimension (three dimensions define space, two dimensions a plane, one dimension a line,

and zero dimensions a point) but which has non-integer values: for the Sierpinski Gasket

it is log 3( ) / log 2( ) = 1.58... ; for the von Koch Snowflake it is log 4( ) / log 3( ) = 1.26...;

and for fractal mountains it is usually between 2.1 and 2.3.  The larger the fractal

dimension, the more wiggly the shape, and as the fractal dimension of, for instance, a line

approaches the integer value of the next higher dimension (in this case, going from 1.0 to

2.0), the fractal curve becomes space-filling, that is, it fills the entirety of some part of the

next higher dimension (in this case, a plane).  Not an immediately intuitive notion, this

idea of fractal dimension, but it becomes so surprisingly quickly -- one comes to think of

the fractal dimension as simply a numerical measure of just how convoluted the curve or

surface is, and with some practice one can estimate its value fairly accurately just by eye.

Cumulus clouds, for instance, have a fractal dimension that's usually about 2.2 to 2.3.

10.3.  A Bit of History

Around the turn of the century, there occurred something of an upheaval in the world

of mathematics.  Mathematicians such as Weierstrass, Cantor and Peano conceived of

bizarre constructions: strange "dusts" of unending complexity; functions with wildly
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unpredictable behavior; curves that could fill space or have no tangents.  They boasted

that these entities had no counterpart in nature and were somehow inherently intractable;

having discerned what they could about them, the mathematicians labeled them

"monsters", ill-begotten and unwanted children of mathematical speculations.

Interestingly, while they had studied the beasts formally, they were never concerned by

what they actually look like and pictured only the simplest among them.  In general, the

tedious and copious calculation required to make such a pictures would have to await the

invention of the modern digital computer.

As a young man in the 1940's, Benoit Mandelbrot had an uncle (also of the name

Mandelbrot) who was a well-known mathematician in his own right.  One day he showed

the young Benoit a mathematical paper by Fatou, telling him "there is a career to be made

in this, for the person who can figure it out and pursue this work".  Young Benoit had a

look at the paper, and concluded "this is definitely not for me".  Over the years, however,

the ideas germinated in the back of his mind, and he came to be working on problems less

far-removed than he himself realized, at the time.  As is usually the case with scientific

discovery, fractal geometry took form in his mind as if by a slow process of awakening,

rather than an instantaneous "aha!"

Mandelbrot was employed by IBM as a research scientist in 1958.  This gave him

ready access, in the 1960's, to the then-exotic digital computer.  Armed with the requisite

mathematical insight, the computer provided the tool he needed to explore the latter-day

"monsters" of mathematics and discern something more of their true nature.  What he

found is illustrated in the images in this calendar.

Fractals and the computer are inextricably intertwined.  While ordinary mathematics

often takes the form of equations such as y = f x( )  which may be solved explicitly,

fractals are generally specified in terms of recursive procedures such as

f xi+1( ) = f f xi( )( ) , that is, the mathematical operation is applied repeatedly to its
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previous result.  This is a recipe for tedium, for a human calculator, but it is exactly the

kind of thing a computer does best: vast quantities of relatively simple operations.  The

fractal equation is then:

[simple operations] times [a mind-numbing number of repetitions]

= [mind-boggling complexity].

The "simple operations" term means that fractals are relatively easy to program into

the computer.  The "mind-numbing number of repetitions" term means that the computer

will do it much faster, more accurately, and with less pain and complaint than a human.

The result -- "mind-boggling complexity" -- was a complete surprise, and means that we

need to invoke special measures to deal with the problem of making sense of the results

of the computation.

It turns out that the way we human beings are wired up, of all our senses, vision

provides by far the greatest bandwidth (amount of data per unit time) for getting

information to the cerebral cortex, to the higher brain centers.  Then, rather than looking

at the results as a bunch of numbers (which is how the computer deals with them), we can

make pictures out of them.  The original fractal computer graphics mark one of the

earliest uses of the computer for the purposes of scientific visualization.  In fact, fractal

computer graphics are being used even now in the service of making scientific

discoveries: the images make possible the recognition of patterns and relationships which

would otherwise be lost in floods of computational data.  Serendipitously, the complexity

inherent in these synthetic fractal images often comes hand-in-hand with an astonishing

beauty, making accessible to every person some of the much-touted abstract beauty of

pure mathematics.  Indeed, some fractal geometers would claim that the images provide a

sort of intuitive, visual proof of the existence of such beauty.
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10.4.  Fractals in Science and Philosophy

What, one might ask, are fractals good for? Well, obviously, they generate some

convincing models of natural phenomena such as mountains and clouds for use in

computer graphics imagery, and they provide some very compelling abstract pictures.

But recently, something like one third of all physics papers submitted to journals for

publication at least mentioned fractals somewhere.  The fact is, fractal geometry is so new

on the scientific scene that its uses are still being puzzled out.  The modern philosopher

Martin Heidegger argued that language itself allows for, even generates a world.  If this

is true, we can expect a fundamentally new language with a hitherto-untouched domain of

expression to generate a new world view.  Fractal geometry is in the process of doing just

that.

Perhaps the most profound impact of fractal geometry to date is in the new science of

chaos.  Scientists have recently discovered order in natural systems, where previously

there had seemed to be none; the language of fractals provides the vocabulary with which

they can speak of this order; without it, that order probably would have remained

unrecognized.  The science of chaos deals with the behavior of nonlinear dynamical

systems, that is to say, "equations that model natural systems well, and how they evolve

through time".  Scientists have long used linear approximations to nonlinear systems

as a matter of mathematical expedience.  The nonlinear mathematics models nature more

accurately, but is intractable in comparison to the linear approximations.  When

computers made it possible for scientists to begin to cope with these previously-

intractable nonlinear systems, they discovered something very surprising: they call it

deterministic chaos or sensitivity to initial conditions; it means that any perturbation to

the initial state of the system, no matter how small or seemingly insignificant, will cause

the system to diverge; i.e., to evolve into  an arbitrarily different future state, within a

finite period of time.
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This is a counterintuitive notion: we would expect systems that started off in very

nearly the same state to continue, forever, to evolve upon reasonably parallel paths.  Not

so, we find, and this has profound philosophical consequences.  In the 1600's Descartes

and Newton, as natural philosophers, fleshed out a world view so compelling that, if the

average educated person in our society today stops and thinks about it, it seems to be "the

obvious way that things are".  In the Cartesian universe with Newtonian dynamics, if we

knew 1) the position and velocity of every particle in a closed system and 2) the rules for

their interactions, and we had sufficient power to compute all those interactions, we

would have the power to predict the future, forever, for that system.  Obviously correct,

right?  If our "closed system" were the entire universe, this would have profound

philosophical implications: there could be no free will, it implies that we are all witless

automatons, mere puppets in some sort of deterministic, already-written cosmic script.  It

would affirm the nihilistic philosophy of fatalism, and undermine the basis of human

morality: that we have a choice in matters, and that what we choose to do -- and not to do

-- makes some kind of a difference.

Perhaps fortunately, our century has seen a series of repudiations to this deterministic

model of the universe.  First, Einstein dealt a blow to Cartesian geometry with his

theories of relativity: space/time is curved, and a line is straight or curved relative to the

observer's frame of reference.  Then came quantum mechanics, wherein the Heisenberg

Uncertainty Principle states that, for particles on the subatomic scale, we can know their

position or the velocity, but not both -- this torpedoes the first premise for computing the

future in a deterministic universe.  Very recently -- within the last 15 years or so -- the

science of chaos has driven a second nail into the coffin of the deterministic universe:

Suppose we did know the position, velocity and rules of interaction for all particles.

Then any error, no matter how small, in the initial data, in its representation (or that of

intermediate results), or in the computation, would lead our computation-of-the-future to

be wrong by an arbitrary amount within a finite period of time.
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We are left with a bizarre world view: The universe may indeed be deterministic

(determinism means that the past absolutely determines the future, that there is no

"choice" at any time, and therefore no true randomness and no free will) yet that

observation is useless, it is meaningless, it does us no good whatsoever -- we may as well

be living in a nondeterministic universe brimming over with free will! This is

philosophically profound, and evidence that our fractal geometry has indeed "generated a

new world", in the sense that it has fundamentally changed the way we see our universe,

as well as the way we expect it to behave.  Such is the character of scientific revolutions.

10.5.  Fractals in Art and Music

Back on the more prosaic plane of everyday life, we find that fractal geometry is

beginning to influence the visual arts.  As a language of shape and form of unprecedented

richness, it is fairly easy to see that it can provide a new language for art.  Fractals images

are most readily generated with computer graphics, but computer graphics as a medium

for the fine arts is nascent: the medium and process need to be developed and refined, and

artists with madness (in Plato's sense of the word) and understanding must come to work

with it.  Fractals provide a visual dialect of natural forms, couched in the formalisms of

mathematics.  The latter makes it challenging -- even alienating -- to artists, while the

scientists and mathematicians who are prepared to deal with that are rarely trained and

practiced in the discipline of visual aesthetics.  There is beauty to be found in

deterministic fractals such as the Mandelbrot set and in random fractals such as fractal

mountains; indeed, that beauty often has the character of seeming to exist a priori,

somehow inherent in the (in fact always-deterministic) procedures used to calculate them.

The role of the artist is in exploring the fractal forms and interpreting them, visually, in a

way that brings aesthetics to the forefront.

Another fascinating association of fractals with the arts is in music.  It turns out that

music from all cultures is fractal in an essential way: there is a repetition of form over a
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variety of scales, "scale" in this instance being over time.  This fractal character is

somehow so essential that a sequence of random notes sounds quite "musical", if it is

only constrained to have fractal changes.  That is, if the random "score" is constrained,

say, to look like the profile of a mountain range, we hear something that is tantalizingly

close to a non-random, human-crafted musical score.  Much as the fractional Brownian

motion we use to create fractal mountains lacks some of the features of real mountains,

yet nevertheless captures the essence of "mountainous", a random fractal musical score

somehow has the essence of music, without the structure that a human composer would

impart.

Musical composers such as Wuorinen and Legeti are (consciously) using fractals in

their compositions, yet this area of exploration of the applicability of fractals has also

barely begun.  An early synthesis of fractally-informed music and fractal imagery was the

experimental performance by Mandelbrot and Wuorinen of "New York Notes" at the

Guggenheim museum in the Spring of 1990, with a reprise performance at the Alice

Tulley Hall of Lincoln Center in the Spring of 1991.  This and other seminal fractal

artworks make it clear that the association of fractals and the arts is a potentially rich

field, with much exciting work yet to be done.

10.6.  The Fractal Calendar

This calendar of fractal images was designed with a combination of emphasis on

aesthetics and on variety of imagery.  Some attempt has been made to represent the major

types of fractals: deterministic fractals such as the Mandelbrot set and its variations, as

well as the whimsical "non-Platonic solids"; and random fractals as manifest in

landscapes with their fractal mountains, clouds, waves, trees, and surface textures, as well

as the diffusion-limited aggregation or DLA.  I have also striven to represent a wide

variety of fractal generation methods: iterations on the complex plane and in the

quaternion numbers; iterated function systems; graph grammars or L-systems; midpoint-
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displacement and spectral synthesis methods for terrains; procedural textures for surface

detail and artistic image processing; simulation of physical processes; and genetic

algorithms for image synthesis.  Some of the images are intrinsically two-dimensional,

others are of three-dimensional objects; some are abstract and some represent "fractal

forgeries of nature" and are thus quite realistic.  On the whole, they represent some the

most interesting of recent fractal images, and I hope that they will offer both pleasure and

stimulation, and perhaps even inspire some future fractalists.
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Appendix E.  Color Plates

Plate 1.1  "The Road to Point Reyes" was executed in 1983 by a team six of the top

researchers in computer graphics at the time. [24]  It features many of the

kinds of models which we have sought formalize and document in the

course of our own work, as well as some of the foibles we wish to remedy

(such as the creases in the distant terrain).  This image appears by the

courtesy of Rob Cook. [21]

Plate 1.2  "Misty Mountains" illustrates both a sedimentary rock strata texture and the

exponential-by-altitude "mist" atmospheric function.

Plate 1.3  "Zabriskie Point" is an example of an image which is simultaneously successful

as art and scientific illustration.  The image was conceived and executed as

an illustration of the mirage model seen in the foreground. [95]  It also

embodies some of the greatest aesthetic subtlety and sophistication in any of

our images.  Note that the clouds are the same model used in Plate 4.3.

Plate 2.1  "Bahama" demonstrates the fractal edge generated by the hexagon-subdivision

terrain generation scheme and our terrain generation-time model of fractal

drainage networks. [78]  This is a grid-traced height field of dimension

12072 , making it a record-breaking scene, in terms of the number of unique

geometric primitives present, at the time it was rendered in 1987.
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Plate 2.2  This patch demonstrates the flexibility of noise synthesis in modulating

frequency content of a stochastic function.  The patch goes from planar to

space-filling, as the its spectral content goes from 1/ f ∞  to 1/ f 0.

Plate 2.3  This noise-synthesized patch demonstrates varying fractal dimension from 2.0

to 3.0.

Plate 2.4  In this noise-synthesized patch, we vary spectral content with altitude, to get a

first approximation of eroded terrain.

Plate 2.5  "Spirit Lake" shows the above model, used in a realistic rendering.  Note that

the relatively smooth character of the terrain allows us to tessellate it with

large triangles (see the vicinity of the peak).  This implies a small height

field, which can be rendered rapidly.  Also present is the physical model of

the rainbow described in section 4.2.

Plate 2.6  Here we have a noise-synthesized patch where the spectral content is

modulated by horizontal position, to generate a ridge line.

Plate 2.7a-d  Noise functions and fBm generated from them: a) Noise as 2-D intensity

plot.  b) VLNoise  as 2-D intensity plot.  c) Noise-based fBm.  d)

VLNoise-based fBm.

Plate 2.8  Here we see a heterogeneous terrain function used to emulate terrain

morphology on a very large scale.  Note the variety present: plains, rolling

foothills, and alpine areas; all in one model.

Plate 2.9  "Hell" is a fanciful rendering which features a fixed-resolution, heterogeneous

ridged-fBm terrain model with a procedural flame texture applied to

simulate lava.  The terrain model is 16002  height field patch, rendered in

Rayshade with hierarchical (162 -tree) grid tracing.
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Plate 2.10  A noise-synthesized terrain patch before erosion simulation.

Plate 2.11  The above terrain patch after 106  time steps of the fluvial erosion simulation.

Plate 2.12  A noise-synthesized height field before thermal weathering.

Plate 2.13  The above height field after 100 time steps of thermal weathering.

Plate 4.1  "Slickrock" is a procedural terrain with adaptive level of detail.  This rendering

method makes possible use of a basis function with a discontinuous

derivative, for construction of the terrain.  Thus the terrain model features

coherent ridgelines at all scales.  The exponential mist model with the

Rayleigh scattering approximation provides atmospheric perspective: note

how the distant mountains are bluer and of lower contrast, giving a sense of

truly grand scale.  The background is black; Rayleigh scattering makes the

sky blue.  Note that the color of the atmosphere is off-white, as seen at the

horizon.

Plate 4.2  "Carolina" demonstrates the utility of the exponential mist model.  The effect

obtained here is exactly what Lynch describes. [75]  The Rayleigh scattering

approximation adds realism.

Plate 4.3  "Gaea & Selene" illustrates the planetary atmosphere model and some

procedural models of planets.  The primitive geometric objects in the scene

consist of three spheres (the Earth, clouds, and Moon), plus the atmosphere.

All visual detail is provided by (rather elaborate) procedural textures.

Plate 4.4  This detail of "Gaea & Selene" highlights our Rayleigh scattering model, as

applied to the planetary atmosphere. [103]  Note the continuous segue in the

homogeneous atmosphere model from blue against the black background of
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space (from scattering) to a smoggy orange-yellow (from extinction),

against the pale background of the moon.

Plate 4.5  A quarter-lit rendering of a planet with the cylinder-umbra model.  Note the

sharp shadow in the atmosphere at the poles.  Close inspection of the

terminator near the center of the planet reveals the white line caused by the

adding-epsilon "solution" to the problem of floating point imprecision in ray

tracing.  This epsilon, added to the ray after intersecting the cylinder where

is nearly coincident with the planet surface, causes the secondary ray to miss

the planet sphere and proceed inside the planet, thereupon integrating to the

base color of the atmosphere (white).

Plate 4.6  In this rendering, the atmosphere color and extinction coefficient vector vary

with angle to the sun.  Thus the sky is blue in the areas of full daylight, and

fades to red towards the terminator.  The umbra model is not needed, as the

atmosphere is darker and of lower density on the night side.

Plate 4.7  Here the radial fog or planetary atmosphere model is used for visualization of a

DLA (diffusion limited aggregate) cluster.  Foreground and background are

distinguished for this visually-complex object by the atmospheric effect.

Note that there is no light source in this scene; the non-physicality of the

atmosphere model makes it "semi-luminous": it appears light, but cannot

illuminate other objects.  It can, however, be reflected by shiny balls.

Plate 4.8  "Fractal Mandala" illustrates an artistic use of the models described in this

paper.  The extinction coefficient vector has been used not to simulate

Rayleigh scattering, but to simulate a range of blackbody radiator

temperatures.  The goal was to depict a glowing ball of gas resembling a

collapsing (dustless) protostellar nebula.



257

Plate 4.9  Here we have a dispersing prism on checkerboard, with the empirical rainbow

model above (rendered with non-empirical angular width and position

parameter values).  Close inspection reveals green fringes where the

dispersed image of the checkerboard transitions from red to white.  This

artifact results from the use of red energy to represent violet with magenta.

Plate 4.10  Spectral aliasing in the physical rainbow model, due to the use of a small

number of samples and a point light source.

Plate 4.11  Spectral antialiasing, as provided by Jittering and convolution of the rainbow

simulation data with a one-dimensional, normalized kernel representing the

angular illumination distribution across the Sun's disk.

Plate 4.12  Here we see an ideal rainbow rendered with a black background and no terrain

to truncate the bottom; thus the rainbow appears as a circle.  Intensity

modulation by cloud shadows and non-uniform rain distribution is simulated

here with 2-D fBm intensity map, generated with a procedural texture.

Plate 4.13  "Medicine Lake" illustrates Alexander's band clearly: see how the sky appears

lighter inside the primary arc, and outside of the secondary.  The tree in the

foreground is a preliminary L-system model of tropism by Prusinkiewicz.

[123]

Plate 5.1  "Bay Fog" employs an fBm texture on a plane to simulate a cloud stratum.  The

texture actually assigns a fog value to the ray which is refracted (at no

change in index of refraction) through the plane.  Thus the fog is more dense

where the terrain behind is farther away, and it disappears near the plane's

intersection with the terrain.  The fog also casts shadows on the terrain

below.  Note also the subtle use of Rayleigh scattering as a scale cue.
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Plate 5.2  A planetary-scale model of clouds, with a vector-valued noise used for

distortion.  Note that the distortion varies smoothly, as the cubic polynomial

interpolant of the noise function.

Plate 5.3  The above cloud model, generated with an fBm-valued distortion vector.  Here

we use a fractal distortion in an attempt to get an approximation of

turbulence.  Unfortunately, the result looks more like raw cotton than

turbulent flow.

Plate 5.4  A procedural texture as a model of a cyclonic storm system.  Note that different

fractal models are used on the large and small scales, in accordance with

observations of Nature. [62]  This may be viewed as a first approximation to

viscous damping in a model of turbulent flow.

Plate 5.5  A procedural model of the cloud tops of Venus, with the Coriolis effect.  This

relatively faithful model of Nature was generated by fairly small code

segment.

Plate 5.6  A procedural model of the cloud tops of Jupiter, with Io in the foreground and

the shadow of Ganymede behind.

Plate 5.7  The Voyager image of Jupiter and Io, after which Plate 5.6 is modelled.  Note

the vortices in the clouds of Jupiter, a salient aspect of turbulent flow not yet

modelled well with fBm-based procedural textures.

Plate 5.8  "Other State" features a procedural model of Saturn and its rings.

Plate 5.9a-f  Stages in the construction of a terran procedural texture.

Plate 8.1  A panoramic rendering of the Valles Marineris on Mars, synthesized using

elevation data derived by the USGS from Viking imagery.  The field of view

is 370° by 180°.  A procedural texture with adaptive level of detail has been
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used to enhance surface detail and the visibility of topographic morphology.

The height field was grid-traced using Rayshade, with Phong-shaded

triangles used to disguise surface tessellation, particularly in the foreground

where the triangles would appear quite large.

Plate 9.1  "Blessed State" is an example of artistic self-expression gained strictly through

the access provided by the formal logic of a computer program.  This image,

as well as all others presented here, was constrained to represent the exact

output of a computer program.  That program creates a two dimensional

image from a three dimensional model.  The random fractal elements which

grant the image its visual complexity feature parametric control of statistical

behavior only; no direct control of details is possible in this approach.
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Color Slide Pages
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Appendix F.  Curriculum Vitae
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